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Syllabus of Mathematical Statistics 1

Chapter 1: Additional Topics in Probability

Special Distribution Functions : The Binomial Probability Distribution, Poisson
Probability Distribution , Uniform Probability Distribution , Normal Probability
Distribution , Gamma Probability Distribution , Distributions of Functions of
random Variables (Transformation technique, Distribution Function technique,
Moment generating function technique), Limit Theorems: Chebyshev's Theorem
Law of Large Numbers, Central Limit Theorem.

Chapter 2: Sampling Distributions

Samplmg Distributions Associated with Normal Populations, Distribution of X and
S2 , Chi-Square Distribution, Student t-Distribution, F-Distribution, Distributions
of Order statistics, Large sample Approximations: The Normal Approximation to
the Binomial Distribution, Limiting Distribution: Stochastic Convergence, Limiting
of moment generating functions, Theorems on Limiting distributions.

Chapter 3: Point Estimation

The Method of Moments, The Method of Maximum Likelihood, Some desirable
properties of point estimators, Unbiased Estimators, Sufficiency, Consistency,
Efficiency, Minimal Sufficiency and Minimum-Variance Unbiased Estimation,
Cramer—Rao procedure to test for efficiency.
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Discrete Distributions
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Continuous Distributions
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Table X Discrete Distributions

Probability Probability Moment-

Distribution and Mass Generating Mean
Parameter Values Function Function E(X) Variance Var(X) Examples
Bernoulli g, x=0,1 q +pe', p Pq Experiment with two possible
D=p=l —00 <[ <00 outcomes, say success and
g=1-p failure, p = P(success)

n .
Rinomial ( )pxr:;-'"'x+ (g + pe')", np npq Number of successes in
n=123,... r —00 < <00 a sequence of n Bernoulli
D=p=1 x=01,....n trials, p = P(success)

. 1 PEI 1 q i
Geometric q'p. : r - — The number of trials to
D<p=<1 x=12.... —4E P P obtain the first success in a
g=1-p t < —In(1-p) sequence of Bernoulli trials

_ ) Ni\[ Nz : :
Hypergeometric ( ' )(n B ,r) N, Np\(Na\ (N —n Sa!ﬂctlng n objects at random
r=nx=N, — N nl— nl—||— without replacement from a
n—-x<N, ( ) N NJANJAN -1 set composed of two
N=N;+N; n types of objects
Ni=0 MN=10

-1 )’ .
Negative Binomial ( ) g, (.D—}r : ! r—i The number of trials to
r—1 (1-ge') p p obtain the rth success in a
r=1.23... x=rr+1,... t<—In(1-p) sequence of Bernoulli trials
Dep<l
aXe
Poisson — eHe'=1) bl A Number of events occurring in
L=0 o . a unit interval, events are
x=0.1, occurring randomly at a mean
rate of A per unit interval
1 1 21 :
Uniform —, x=1,2 % . T Select an integer randomly
m=1 m from1.2.....m




Table XI Continuous Distributions

1. t=0

Probability Moment-
Distribution and Generating Mean
Parameter Values Probability Density Function Function E(X) Vanance Var(X) Examples
r
Beta @+5) a1y _pp-1. v of 2 X = X,/(X; + X5),
a=0 [(e)T'(B) a+tp (e+p+1)a+p) where X and X5 have
f=10 D=x<1 independent gamma
distributions with same ¢
212 1 1 distributi
Chi-square T ———. < r r (Gamma distribution, # =2,
r=112... L(r/2)27 (=207 2 & = r/2; sum of squares of r
D<x<oo independent N(0, 1) random
variables
1 1 o .
Exponential P Hf 0<x<m — = - f e Waiting time to first arrival
f=10 d 1-o when observing a Poisson
process with a mean rate of
arrivals equal to A = 1/6
xelgxlt 1 1 . :
Gamma ‘ —, — < - wf) wh? Waiting time to eeth arrival
o =0 [(e)s (1-61) 0 when observing a Poisson
8=0 Dex=oo process with a mean rate of
arrivals equal to A = 1/0
g~ (1-1)/20° s ,
Normal g+t /2 I o2 Errors in measurements;
—00 < I < 00 ov2r -0 <l <00 heights of children;
o=0 —00 <X <00 breaking strengths
1 el — ¢l a+b bh—a)
Uniform P a<x<h 7 , 1£0 — ( ) Select a point at random
—0<a<h<oo —a f(b—a) - 12

from the interval [a. b]
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Distribution function method

Basically the method of distribution function is as follows If x
is a random variable with pdf f,.(x) and if y is some function of
x , then we can find the cdf f,(y) = p(Y<y) directly by
integrating f,(x) over the region for which (Y< y) , now by
differentiating fy(y) , we get the probability density function
fy(y) of Y . In general , if Y is a function of random variable
X1....Xo SAY g (X1.....X,), then we can summarize the method of
distribution function as follows.

PROCEDURE TO FIND CDF OF A FUNCTION OF R.V
USING THE METHOD OF DISTRIBUTION FUNCTIONS.

find the set of (x¢, x,
2- find fY(y)= p(Y< y) by integrating (x4, x>
region (Y< y).
3- find the distribution function f,,(y) by differentiating fY(y).
Example: let x~N(0,1) using the cdf of x find the pdf of y=x?
Solution:

Note that the pdf of X is

x2
2 —oo<x<oo

fex) = ==e

then the cumulative distribution function of Y for a given y> 0
is fY(y)=p(Y< y) =p(e” <)
=p(x < iny)
x2

Iny 1 =
="V —eZ dx
-x 2m

Hence by differentiating f,,(v), we obtain the probability

density function as.




x%
2

e O<y

f(y)=|

-0 other wise

X

Example: let f,) = x—lz ,Xx=>1findthep.d.f.,Y=e™ by using

distribution technique ?

Solution:
-1
= for x> 1

f(x)=1

1 O.w

f(y) =p [YSV }.:} p%‘x Sv}

fly)=p [—xs In yJ‘* -1

Example: let x~K(0,1) using the cdf of x find the pdf of y=x?2

Solution:
Since x~N(0,1)

1 ‘_1x2f
— ez or —oo <x < 0o
V2T

- f ()=

O.w
f(y)=p

f(y)=p

f(y)=p :




—o <X <o
0<x <oo
O0<y <>

Example: let x~N(0,1) using the c. d. f. of x. find the p. d. f. of

y=e”
Solution:
Since x~N(0,1)
1 -1
am ©°
fly)=
0

r

f(y)=p

x < InyJ

~

f(y)=p

Iny 1
fO) =2, 7=e

xZ

o.w

YSyJ — =p[exS)J

“dx == f(y) ==

-1 x2

dx

Iny 1
dy “—® \/




o< X <00
e® <e* >e”®
0<e* <o
I<y<ow
Example: If X~ Poisson(y) find the cumulative distribution
function of Y=ax+b
Solution:
Since x~N(0,1)

~ f(y)=

fly)=p|
fly)=p|ax <

fly)=p|x
sine xupo(1l)=—=) discrete distribution

l

b
f(y)= Z 2o

x1
y=ax+b
if x=0y = 0+b




if x=1 ==——=) y=a+b
if x=2 =——=) y=2a+b

y=b,a+b,2a+b,3a+b,
~y=na+b

fly)=p [xz —lnyJ —) f(y) = 1-p[x£ —lny}

f=1-["Sdce==f) =1- [, " x2dx

fN=1-[;1;" == fO)=1-[ 5 +1]

f(}’)=7

5(1)— 1

f) = @y — fO) =G
f) =

y(lny)2

T for 0<y< el
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Probability Integral Transformation
Let X be a continuous random variable, with pdf f and cdf F. Let ¥ = F(X). Then,

FL(y)
‘ F-1(y)
= f fx(x)dx = Fy(x) =)
—00
—00
Hence,
| I, O0<y<l
) =1
0, otherwise.

Thus, Y has a U(0, 1) distribution. The transformation Y= F(X) is called a probability integral
transformation. It is interesting to note that irrespective of the pdf of X, Y is always uniform
in (0, 1).



Asimple generalization of the method of distribution functions to functions of more than one variable
is the transformation method. We illustrate the method for bivariate distributions. The method is similar
for the multivariate case. Let the joint pdf of (X, Y) be f(x,y). Let U=g1(X,Y); V=g2(X,Y). The
mapping from (X, Y) to (U, V) is assumed to be one-to-one and onto. Hence, there are functions, i
and h, such that

X :hl_l(u, V),
and

=1

y="hy (u,v).

Define the Jacobian of the transformation J by

dx  ox
o du v
dy dy
du  du

Then the joint pdf of U and V is given by

fu,v) = fhy vy, hy @) |J].



Example
Let X and ¥ be independent random variables with common pdf f(x) = ¢™, (x > 0).Find the joint pdf of

U=X/(X+)),V=X+Y/.

Solution
We have U=X/(X+Y)=X/V.Hence, X=UV and Y =V =X =V - UV=V(1-"U). Thus, the Jacobian

v I
J = .
v 1-u

Then |J| = v(1 —u)+uv=1v(>0). Note that 0 <u < 1,0 < v < 0.
flu,) = £ (A7 0,01 b7 0, 0) 1

— v

p ._”(]_“)

e U

=ve ", 0<u<l1,0<v<.



Functions of Several Random Variables: Method of Distribution
Functions

We now discuss the distribution of ¥, when Y is a function of several random variables, Y =
g(Xl, ey Xﬂ)

Example
Let X1,..., X, be continuous iid random variables with pdf f(x) (cdf F(x)). Find the pdfs of

V1 =min(Xy,....X,) and Y, =max(Xy,.... X))

Solution
For the random variable Yy, we have

| = Fy, (y) = Py >y)



1 —Fy,(y)=P(Y1 > )
=P X1>v,Xo>v,..., Xn >y)
=PX1>yPXa>y)...P(Xy =)
(because of independence)
= (1 - Fy)".
This implies
Fy,(3)) =1—(1—F(®y)"
and

fri () =n(1=Fe)" ().
Consider Yy. Its cdf is given by

Fy (y) = P(Y, <y) = (F(y)".



Suppose we want the marginal fy(v) and fy(v), thatis,

|
fvl) = [ e di=ve™", 0<v<
0
and
00
fU[”)Z/UE’_”dU: [, 0<u<l,
0

Sometimes the expressions for two variables, U and V, may not be given. Only one expression is
available. In that case, call the given expression of X and ¥ as U, and define V = Y. Then, we can use
the previous method to first find the joint density and then find the marginal to obtain the pdf of U.
The following example demonstrates the method.



Example :
Let X and Y be independent random variables uniformly distributed on [0, 1]. Find the distribution of X + V.

Solution
Let

U=X+Y,
V=Y

fx,y)=1, 0=x=1,0=y=1,

X=U-YV
Y=V
1 —1
J = = 1.
0 1
Thus, we have
f{u,v):{l’ O<u—v=1 O=v=<l,
0, otherwise.

Because V is the variable we introduced, to get the pdf of U, we just need to find the marginal pdf from the
Jjoint pdf. From Figure 3.10, the regions of integration are 0 < u < 1, and 0 < u < 2. That is,

fU(“}fo(u,v}a’v:fldv
}ﬂ'”:“s O=u=1
0

1
fa'u:Z—u, 0=<=uwu=< 2.

u—1



v=u-—1
u=v l\
o £
\ | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
lu
(1, 0) (2,0)
W FIGURE The regions of integration.

fu(m) 7

0.0

M FIGURE:

0.5 1.0

Graph of frr(u).

1.5

2.0

2.5



EXERCISES
1. Let X be a uniformly distributed random variable over (0, ). Find the pdf of Y =¢X +d.
2, 'Thejoint pdf of (X, ) is

T+V

1 - - "
f(a,y):e—ze 7, x,y>0, 0>0.

Find the pdfof U=X -7Y.
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Transiormeation Method off one dimensional

Theorem. Let X be a continuous random variable with probability
density function f(X). Let y = T(x) be an increasing (or decreasing)
functon .Then the density function of the random density function of the
random variable Y = T(x) is given by

0 = |5 Fwe)
9 =135 fWy))
Where x = W (y) is the inverse function of T(x).

Proof:- suppose y = T(x) is an increasing function . The distribution
function G(y) of Y is given by

G)=PY =<y
=P(T(x)<y)

=PX =W(©u))

w()
= J f(x)dx.

Then, differentiating we get the density function of Y, which is

_de)
9g(y) = dy

d w()
= @ ( f f(x) dx)

aw (y)
dy

=fw®»))

d
_ f(W(y))£ (since X = W()’))-



On the other hand, if y =T(x) is a decreasing function, then the
distribution function of Y is given by

Gy)=PY <y)
=P(T(x)<y)
=P(X=W(y)) (sinceT(x)isdecreasing)

=1-PX < (WQ))

w(y)
=1 —f yf(x)dx.

As before, differentiating we get the density function of Y, which is

_de)
9g(y) = “dy

d w(y)
= d_y<1 — j f(x)dx)

aw (y)
dy

=—fW®»))

d
_ _f(W(y))é (since X = W()’))-

Hence, combining both the cases, we get

dx
90 = [ | Faw o)

And the proof of the theorem is now complete .



Example: Let f(x) = i

1

Solution: f(x) = {x
0

g = flo(]. 1]
y=x=>x=Yy

1

flo)] = {;
0

] = dx‘_1

1

9gy) = {}
0

x =2 1Findthep.d.f of Y =x

for x =21

o.w

fory>1

o.w

fory =1

o.w

Example: If x ~ f(x) = 2x for 0 < x < 1. Find the distribution of Y = 4x2.

Solution:-
fe =1,
g = floa)]. 1]

2x for0<x<1

o.w

for0<y<4

o.w

for0<y<4
0.w



dx 1
J=|=|=—=

dy |l 4.fy
Jy
0 0.w

1
gy) = { 3z Jor0sys=4 g0y uniform(0,4)
0 0.w

Example: If the p.d.f. of xis f(x) = 2xe™*" 0 < x < oo . Determine the
p.d.f. of y = x?

Solution:-

fx) = {er‘xz for0 <x <
0 0.W

9g») = floaMI-1J]
y = x? =>x=\/§

flogy = (e for0sy<e

0 0.W
dx 1
Ul =|>=|=>F%=
dyl 2.[y
2\/ye™” ! foro<y<
e " —= orv = %
g =1V 2.y Y
0 0.W

I 0<y<ow
g ={ g7 TrOSY<® gy)~Gamma(i1)

Example: Let x~uniform(0, «). Determinethe p.d.f.of ¥V = cx + d.

Solution:-

Fx) = ocl for0 < x <«

0 o0.w



g = floaM]-17J1
y=l[ex+d] +c

1

0 0.wW
] = dx‘_l
/1= dyl ¢
1
0 0.wW

Example: Let x~uniform (0,2).Find the p.d.f. of ¥ = X?

Solution:-

0 0.wW

y = x? =>x=\/§

g = flo)]-1J]

1
f[w(y)]={ 7 Jor0=y=t

0 0.w
dx 1
=|z| ==
dyl 2.[y
1 1 for0<y<a
- = orv=sy=
g =42 2y g
0 0.W

1
g(y):{m fOT'OS_'VS‘l-
0

o.w



e

e University of Anbar
College of Education for Pure Sciences

Department of Mathematics

Lecture Note On Mathematical Statistics 1
B.Sc. in Mathematics
Fourth Stage
Assist. Prof. Dr. Feras Shaker Mahmood




Transformation Methods of Two
Dimensional



When two random variables are involved, many interesting problems can resullt.
In the case of a single-valued inverse, the rule is about the same as that in the
one-variable case, with the derivative being replaced by the Jacobian. That is, if X,
and X; are two continuous-type random variables with joint pdf f{xy,x2). and if
Yi = i1 (X1.X2), Y2 = uz(X1,X2) has the single-valued inverse X1 = v1(Y1. Y2).
A7 = v,(Y,,Y3), then the joint pdf of ¥ and Y5 is

g(yv1.y2) = WIf [vi(vi.¥2) va(y1. ¥2)l., (¥1,¥2) € Sy,

where the Jacobian J is the determinant

BI] a'_I]

dyip ady2
g =

3.1'1 3'_1'1

dy, adya2

Of course, we find the support 5y of Yy, ¥>; by considering the mapping of the sup-
port 5y of Xy, X7 under the transformation yy = wi1(x1,x2), ¥2 = tz2(x1.x2). This
method of finding the distribution of ¥y and Y, is called the change-of-variables
technigue.

It is often the mapping of the support 5x of X4, X into that (say, Sy) of ¥y, ¥
which causes the biggest challenge. That is, in most cases, it is easy to solve for x; and
X7 in terms of y; and y,, say,

xXp = vi(¥1.v2), Xz = va(¥1.¥2).



and then to compute the Jacobian

avi(yi.v2)  avi(yi.y2)
a1 ay2
J =
ava(¥1.¥2)  9va(y1.¥2)
dy1 dy2

However, the mapping of (x;.x;2) € Sy into (y4.¥2) € 5y can be more difficult. Let
us consider two simple examples.

Let Xy, X7 have the joint pdf
fl:Ilﬁ.Ig} = 2, () << X1 =< X7 = 1.

Consider the transformation
Y= — Y = X5,

It is certainly easy enough to solve for x; and x>, namely,

Xp = wviyz, Xz = V2,
and compute
¥z M
J = = y2.
0 1




Let X and X5 be independent random variables, each with pdf

f(x)y=e*, 0 <x < oo.
Hence, their joint pdf is
Flx f(x2) = e 17752, 0=x1 =00, 0=<x <00
Let us consider
Y1 = X1 — X7, Yo =X + Xo.
Thus,
_ Mty =2 =N
1=""5 2= "5
with
1 1
2 2
J= =1
11 2
2 2
The region Sy is depicted . The line segments on the boundary.
namely, x; =0, 0 = 3, = o0, and x; = 0, 0 = xy = o¢c, map into the line segments
Yi+¥2 =0, v2 = vy and yy = ¥2. ¥2 = —y., respectively. These are shown in

Figure 5.2-2(b). and the support of 5, is depicted there. Since the region 5, is not
bounded by horizontal and vertical line segments, ¥, and ¥> are dependent.
The joint pdf of ¥, and ¥ is

1
g(¥1.¥y2) = Ef‘ﬂﬁ —V2 =V = y2. 0=y = 00



5
4 ¥z
5 }
31 41
_J__.--" 51. 5],-'
2 4 - 31 -
¥2=-h" Y2=M"M
21
14
‘l 4
: et : - ' ' ¥
1 2 3 4 5 —4 —2 ] 2 4
(a) Support of X, A5 (b) Support of ¥y, Y5
Figure Mapping from xi.x2 to vi1.¥2

The probability P(¥, = 0, ¥2 < 4) is given by

4 pdq Ve
f f — e 2 dyz dy; or f f — e 2 dyq dya.
o Jy, 2 o Jo 2

While neither of these integrals is difficult to evaluate, we choose the latter one t«
obtain

f41 e M dy, = 1( ye—¥2 lf:—‘“4
; 2}’1 Y2 = 3 ¥z —5€" |

%— 5—4—%6—4 = %[1—58_4].



The marginal pdf of ¥; is

n 1
82(y2) = f Ei’_ﬁ dyp=ye7 2, 0<yy<o0
¥z

This is a gamma pdf with shape parameter 2 and scale parameter 1. The pdf of Y is

| fﬂ li’_ﬂd‘r’g =li’“ -0 <y =0
_y 2 : 2 -

2i(y) = |

fmlf_ﬂdvz:lf_ﬂﬁ ﬂ{_}’]iﬂﬂ.
| Sy 2 2

That is, the expression for g4(y; ) depends on the location of yy, although this could
be written as

1
SUNES el _oo <y <,

which is called a double exponential pdf, or sometimes the Laplace pdf. O



Example

Let X and X5 have independent gamma distributions with parameters «, & and 8.
&, respectively. That is, the joint pdf of X and X3 is

flx1.x2) = F(a}l“;ﬁ}aﬂ—ﬁ x‘f‘lx,f_' exp(—%), 0=x; =00, 0 =1x3 < 00,
Consider
h:}{.‘f—l,l{g" Y2 =X + A,
or, equivalently,
X1 =¥1Ys, A=Y —Y1Y2
The Jacobian is
¥z W1
J= =y2(1 — 1) + y1y2 = ya.
—y2 1—w

Thus, the joint pdf g(yvi.y2) of ¥y and Y5 is

Y — 1 o —1 B—-1_—w2/ 8
g(¥1.y2) = |y2 (@) (B)aa"F (¥1y2)* 7 (2 — yiy2)" e

where the support is 0 = yy = 1, 0 = y2 = o0, which is the mapping of 0 <
xX; = oo,i = 1,2. To see the shape of this joint pdf, 2 = g(vy.¥2) is graphed in
Figure 5.2-3(a) withao =4, 8§ = 7, and # = 1 and in Figure (bywithae =8, g =
3,and ¢ = 1. To find the marginal pdf of ¥, we integrate this joint pdf on y,. We see
that the marginal pdf of Y, is

gi1(v1) =

-Ei_}rg .

. _ +A—1
)" (B) g Gath



But the integral in this expression is that of a gamma pdf with parameters o 4 § and
8, except for I'(e + f) in the denominator; hence, the integral equals I'(e + f), and
we have

[+ p)

aln)= yT'l(l—}n}ﬁ"., 0=y <.

[(e)T()

(2) a=4,0=1,0=1

Joint pdf of 7 = glyy. )



0.2 0.4 0.6 0.8 1.0

Figure - Beta distribution pdfs

We say that ¥y has a beta pdf with parameters o« and §.

The next example illustrates the distribution function technique. You will calcu-
late the same results in Exercise 5.2-2, but using the change-of-variable technique.

Example We let

U/
Viry




where U and V are independent chi-square variables with r; and r» degrees of
freedom, respectively. Thus, the joint pdf of U and V 18

urljfl— I '?—H.frl -L_l:r: ,"1—1 E— .-"_.'?

glu,v) = YRR l"{rﬁl]ﬂ'ﬂf'?' D=u<00 0<v<oo.

In this derivation, we let W = F to avoid using f as a symbol for a variable. The cdf
Fiw)=P(W < w)of Wis

U,’r] B
F(w) = P(V_Tg < w) P(U < Ew V)
(ry/r2)wy
f f g(u,v)dudv.

That 1s,

1 00 (ry/r )Wy Tl ,-“l—lf.—ufl .
_ J1/2-1_—v/2
e F(HEE]F(THE}L M ey |V

The pdf of W is the derivative of the cdf; so, applying the fundamental theo-
rem of calculus to the inner integral, exchanging the operations of integration and
differentiation (which is permissible in this case), we have




f(w) = F(w)
:  [(ry/ra)yw]1/2
r'(r EE}F{WE}[. 2(r+r2)/2

g—In J2ra)(vw) il"_| T prl,-“E—IE—v,-’l dv
r2
r/2.,.n/2-1 o0 G Wr14+r2)i2—1
_ (n/r)twtt plrir) e WD r)w] gy,
C(ry/2)C(r2/2) Jo  2(n+n2)/2

In the integral, we make the change of variable

= 1+r]w v so that dv = :
Y= ra | dy 1+(r/raw’

Thus, we have

fiw) =

dy

{rlfrl]r”?r[(rl ¥ rz}}l.'z]wfjfz—] fﬂﬂ} }r[_F’J —F':;I_."-E—lﬂ.—__lr',l'll
0 T[(r 4 r2)/2]20n+m)/2 =

T(r/2)C(r2/2)[1 + (riw/r2)]in+2)/2

. {rlfrz}”ﬁr[(n _I_rz}ll,-z]wr”'l—]
(/2T (r2/2)[1 + (nw/ry)]n+r2/2”

the pdf of the W = F distribution with ry and r, degrees of freedom. Note that the

integral in this last expression for f(w) is equal to 1 because the integrand is like a

pdf of a chi-square distribution with r; + r, degrees of freedom. Graphs of pdfs for
the F distribution ]



Example

It all n of the distributions are the same, then the collection ot n independent
and identically distributed random variables, X, X5,..., Xy, 18 said to be a random
sample of size n from that common distribution. If f(x) 1s the common pmf or pdf of

these n random variables, then the joint pmf or pdf is f(x1)f(x2) - - f(Xn).
Let Xy, X, X5 be a random sample from a distribution with pdf
fly=e¢*, O=x=<no0
The joint pdf of these three random variables is
flxp,x,x3)=(e ) (e )e V)= 25, D=y <00, i=1,23

The probability
PO<Xi=12<X<43<X3<7)

BT

=(l—eNe?t-ehe =T,

because of the independence of X7, X5, Xs. ]
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Moment Generating Technique
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Example
1

The first three sections of this chapter presented several techniques for determin-
ing the distribution of a function of random variables with known distributions
Another technique for this purpose is the moment-generating function technique.
[fY = u(Xy,Xy,...,Xy), we have noted that we can find E(Y) by evaluat-

ing E[u(X

E[EI::{XJ.XE,....

et Xy and
1,234,
our-sided ¢

Xy.....Xp)]. Tt is also true that we can find E[e”| by evaluating
A1), We begin with a simple example.

X, be independent random variables with uniform distributions on
et Y = Xy + Xy For example, ¥ could equal the sum when two fair

ice are rolled. The mgfof ¥ 15

My(t)=E (e“’) ; [ef i) ] (e”le“ )



The independence of Xy and X5 implies that
MﬂﬂzEﬁquﬁwj.

In this example, X} and X, have the same pmf, namely,

1
flx)= riE 1,2,3.4,

and thus the same mgf,

1 1 1 1
MT(I]zi'EI-I_EEZI-I_EE}I-I_ZEM

It then follows that My(f) = [My()]* equals

1 2 3 - 3 2 1
—pMy Sy My o I .y
6° T16° T T "0 T T
Note that the coefficient of e is equal to the probability (Y = b); for example,

4/16 = P(Y =5). Thus, we can find the distribution of ¥ by determining its mgf. m



Theorem

1

If Xy.X5,....Xy are independent random variables with respective moment-
generating functions My (f),i = 1,2,3,....n, where —h; <t < h;,i = 1,2,...,n,
for positive numbers h;,i = 1,2,....n, then the moment-generating function of
Y=%1,aiX;is

i
My(t) = | | My (a;f). where —h; <ait <h; i=1.2,....n.

i=1
Proof From Theorem 5.3-1, the mgf of Y is given by
My(t) = E }:”"] —E [Ef{ﬂj X +ﬂ2x2—"'+ﬂnxﬂ;|i|

— E Eﬂ]fx|€ﬂ1f.!lir2 .. ‘fﬂ_ﬂ:xn]

= E[en™ ] E[en 2] g ],
However, since
E(e’xf) = My, (1),
it follows that
E (eﬂ”‘r’) = My, (aif).

Thus, we have

f

My (f) = My, (a10)Mx,(azt) - - - My, (ant) = | | Mx,(ait).

i=1




Corollary
1

If Xi,X5,..., X, are observations of a random sample from a distribution with
moment-generating function M(f), where —h < f < h, then

(a) the moment-generating functionof ¥ =Y, Xjis

n

My(t) =Mty =[M@)", -h<t<h;

i=1
(b) the moment-generating function of X =Y, (1/n)X; is
. N\]" r
M~1) = Ml=1=1M|- . — — <k,
0TG- <3

Proof For (a), letq; = 1,1 =1,2,... ,n, in Theorem 5.4-1. For (b), take a; = 1/n,
i=1,2,....n. 4

The next two examples and the exercises give some important applications
of Theorem ™ 1 and its corollary. Recall that the mgf, once found, uniquely
determines the distribution of the random variable under consideration.



Example

2

Example

3

Let Xy, X>...., X, denote the outcomes of n Bernoulli trials, each with probability
of success p. The mgfof X;.i=1,2,....n, 18

M(t)=q4+pe', —o0 <t <00,

If
f
Y=> X,
i=1
then
"
Mr(t}zn{q+pe’}={q+pe’]"ﬁ —00 < [ < 0.
i=1
Thus, we again see that Y is b(n, p). -

Let X, A5, X5 be the observations of a random sample of size n = 3 from the expo-
nential distribution having mean ¢ and, of course, mgf M(r) = 1/(1 —81),t = 1/8.
The mgfof ¥ = X) + X5 + X5 is

My (f) = [(1 _ 9:}—1]3 =(1—8n3, t<1/8,

which is that of a gamma distribution with parameters ¢ = 3and #. Thus, ¥ has this
distribution. On the other hand, the mgf of X' is

M(f) = [(1 - %)_T = (1 - %)_3: t < 3/8.

Hence. the distribution of X is gamma with the parameters ¢ = 3 and &/3,
respectively. -



Theorem  Let Xy, X3,..., Xy be independent chi-square random variables with ry,r2,....r,
2 degrees of freedom, respectively. Then ¥ = X1+ X5+ -+ X, 88 g2 (rp 4o - -410).

Proof By Theorem 5.4-1 with each a = 1, the mgf of V' is

n
My(f) = [ [ Mx(0) = (1 =201 =272 (1 - 20y 3
i=1
=(1 =202 witht < 1/2,

which is the mgf of a y*(ri4+r2+- -+ ry). Thus, Y is y2(ri£r24+ - 4+ 7).

The next two corollaries combine and extend the results of Theorems 1  and
> and give one interpretation of degrees of freedom.

Corollary Let Zy,Z3....,Z; have standard normal distributions, N(0,1). If these random
5 variables are independent, then W = Z} + Z3 + -- - + Z; has a distribution that is

K (n).

Proof By Theorem 1 |, Z7 is y*(1) fori = 1,2,....n. From Theorem . 2 , with
¥ = W and r; = 1. it follows that W is x*(n). <




Corollary  If X, X3,.... X, are independent and have normal distributions N(u;, crf)ﬁ i =
3 1,2,...,n, respectively, then the distribution of

(Xi - iy
W= Z 2
=1 %
is y%(n).
Proof This follows from Corollary 2 since Z; = (X; — y;)/e; 18 N(0,1), and thus

(Xi - )
ZEZ i 2 i

0;

s y2(1),i=12,....1. <




Theorem

3

If Xy, X7,...,X,; are n mutually independent normal wvariables with means

14, 142, - . ., itp and variances o, o3, . . ., o, respectively, then the linear function

I
Y = Z C;X,‘

has the normal distribution
H n
N(Z Ciflj, Z Cr.-zﬂe-z) .
i=1 i=1
Proof By Theorem 5.4-1, we have, with —oo < ¢if < 00, 0r —00 < I < 00O,
R "
My (1) = [ M, (cit) = [ exp (u,-r:,-t‘ + o7 2)
i=1 i=1

because My, (1) = exp(uit + oft*/2),i=1,2,... n. Thus,

I o)




This is the mgf of a distribution that is

L i
N(z CifLis Z C%CT’-I).
i=1 i=1

Thus, ¥ has this normal distribution.

Example

4

From Theorem 3 |, we observe that the difference of two independent nor-
mally distributed random variables, say, ¥ = X| — X5, has the normal distribution
N(py — pa. of +03).

Let X and X; equal the number of pounds of butterfat produced by two Holstein
cows (one selected at random from those on the Koopman farm and one selected
at random from those on the Vliestra farm, respectively) during the 305-day lac-
tation period following the births of calves. Assume that the distribution of X
is N(693.2,22820) and the distribution of X5 is N(631.7,19205). Moreover, let X
and X, be independent. We shall find P(X, = X5). That is, we shall find the
probability that the butterfat produced by the Koopman farm cow exceeds that
produced by the Vliestra farm cow. (Sketch pdfs on the same graph for these
two normal distributions.) If we let ¥ = X; — X;, then the distribution of Y is
N(693.2 — 631.7,22820 + 19205). Thus,

—61.5 0—6L5
F(xj}xg}=P{r:}u}=P(y 61> 0-ol )

=2
42025 205
= P(Z > —0.30) = 0.6179. -



Theorem

Let Xy, X>2,...,X, be observations of a random sample of size s from the normal
distribution N(z, ). Then the sample mean,

= 1
X=EEX,-,

and the sample variance,

1 + —
52:;1_12(‘“_""}*

are independent and

(n—1S* _ ¥, (Xi—X)
2 2

is x*(n—1).

or o

Proof We are not prepared to prove the independence of X and S at this time
. 50 we accept it without proof here. To prove the second
part, note that

W — ; (-’fs; u)z _5 [(x.- —T}: (X - #}T

i=1

"X X\ (X —p)p
— Z ( ' 4 n( K (5.5-1)
i=1

er e




because the cross-product term is equal to

zi {T_#)Q{IXE —X) — E{fgz_ H) i (X,— —T) — 0.

But ¥Y; = (X; — p)fo, i = 1.2,. . .n, are standardized normal variables that are
independent. Hence. W = > I | P’f is x2(n) by Corollary 5.4-3. Moreover, since X
is W(pe. o2 jr), it follows that

72 _ (T—#)E _ (X — )

or /A1 or 2
is ¥ 2(1) by Theorem 2 - In this notation.
_(m—1)5°

UZ

W + FZ.

However, from the fact that X and $? are independent, it follows that ZZ and S5
are also independent. In the mgf of W, this independence permits us to write

E[e"W:I = F [E-f{{n_lj.slfgz+;—:3|:| _E ,gffﬂ—"-'szfﬂlgﬁfz:l
= E Eifﬂ—l':l."j‘:..-'gl] E I:'Erz:}

Since W and Z? have chi-sgquare distributions, we can substitute their mgfs to
obtain

(1 —20 "2 = g5 (1 — 20172,

Equivalently, we have

2, 2 . 1
E [ertn- 052 | — (1 — 20 (102, F = —.
(1 —20) < 5
This, of course, is the mgf of a ¥ ?(n—1)-variable; accordingly. (rn1 — 1)5?% fo? has that
distribution.



Theorem

5

(Student’s ¢ distribution) Let

z

T = .
U/fr

where Z is a random variable that is N(0, 1), UV is a random variable that is x>(r).
and Z and U are independent. Then T has a f distribution with pdf

' ((r+1)/2) 1
VETT(r/2) (1 + 2/r)tr+1/2°

Proof The joint pdf of Z and U is

— 00 = [ = OO,

f@) =

l --1" 1 i
glz.u) = ——e =72 w2 —00 < T < 00, 0 < u < oC.

V27 r(r/2)2m>
The cdf F(r) = P(T < r)of T is given by

F(t) = P(Zjv"U—,-’rE r)

— P(ZE N

o WS
= f f e(z,u)dz du.
i — 1060

That is,

F 1 (= w] mr E—J-'::.I'.Z d F",l"-" i !-l!,l"-" d
t) = S dz |wr e w2 gy,
= =Fa2 J‘[.] f_x Sz L F u

The pdf of T is the derivative of the cdf; so, applying the fundamental theorem of
calculus to the inner integral (interchanging the derivative and integral operators
is permitted here). we find that




1 o0 E—{J;,-"Zj[rz,-"rj il
1y = F'(t) = — w2 g
() )= = r(rfﬁ}f] 20402 {1 ¢ “

1 00 4 (r+1)/2—1
~rr(ri2) f] 2(r+1)/2

In the integral, make the change of variables

e— W2+ 0y g

du 1
v=(1+/ru, s0 that i o
Thus,
o0 (r+1)/2—1 .
ro = S A 1 1/ y vz gy,
VEFT(rf2y (14 2/r)+002 | Jo o T[(r 4 1)/2]20r+1)02 :

The integral in this last expression for f(f) is equal to 1 because the integrand is
like the pdf of a chi-square distribution with r 4+ 1 degrees of freedom. Hence, the
pdf is

Cl(r+1)/2] 1
NETT(r/2) (1 42 r)r+1z”

—00 = [ = o0,

()=




Example

5

Let the distribution of T be ¢(11). Then
fpos(11) = 1.796 and — fnps(11) = —1.796.
Thus,
P(—1.796 = T = 1.796) = 0.90.

We can also find values of the cdf such as

P(T = 2.201) = 0.975 and P(T = —1.363) = 0.10. .

We can use the results of Corollary 3 and Theorems 3 and 2 | to con-
struct an important T random variable. Given a random sample X, X5,.... X, from
a normal distribution, N(u.o?). let

X - —1)§?
7= F and U= u
o/ N ol

Then the distribution of Z is N(0,1) by Corollary 3 . Theorem 3 tells us that
the distribution of U is x*(n—1) and that Z and U are independent. Thus,

X—u
o /1 _ X—p

~ S/vn
\l—(ﬂ =2 -

T = (5.5-2)
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Moment Generating Function Method :-

Theorem :

Let m, (t)and my(t) denote the moment - generating functions of random variables X and
Y , respectively . If both moment - generating functions exist and m,, (t) =m, (t) for all
values of t, then X and Y have the same probability distribution.

SSRGS SSRGS ES%

Example: Let X and Y be independent random variables Gamma distributedon[a, 1].
Find the distribution of Z=X + Y.

920 800 o000 8200 800000 0910 0908 806 0000 820 80808 B0 808 808 R0 800 800 0 8.

808 8 08 6 08 L 08 e 08 L 08 e 08 e o8 e o8 e o8 et et e c® et et et et et et e ek et e
Tele Tae Tee S e e Sl T Sl SR T e e e S e e S SR SR e ke K

o T S e SR S TR e e S S S

Solution :

Mc)=(1-D7, M@H=1-D°

My (1) =E(e*) =E(e®™). e)= E(e™)). E(e®™))= M, () My (1)
=1-t)*.1-t)°

= (1-t)™

That is a moment generating of Z is Gamma (2a, 1), Thus
Z=X+Y~Gamma (2a,1).

In general if a identically independent r .v's x; ~Gamma ( a, f),Vi=12.....n. Find the
p.d.fofY=Y",x;
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e
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X
%
]
e
£
5ed
X
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e
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5ed
X
%
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e
£
5]
§
3
]
X

Mx; (t) = (1—- Bt) "% | vi=12,..n

My ( t) - E( ety) — E( pt(X1+X2+-+xn) — E( e(tx1+tx2+---+txn)):E( e(txl) _ e(txz) L e(txn))
=E(e®™®D)E(e®) .. .. E(e®M) =My (t). My (1) ..... My, (1)

=1-p™ . A1-p)y"* ... (A-pry~ "

= (1- gy~
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That is a moment generating of Gamma (31X, ai, B)

Y ~ Gamma (X% ai, f)
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Example :-

Let X;, X5, ..., X;, be independent and identically distributed random variables such that
~N (ui.oi?),vi=1.2, .. , N, Find the p.d.f of Y=}, ai Xi .a is constant .

M, (t) = EXP{,ult+—alt} i=1,2 . n
My ( t) - E( ety) — E( et(alxl+azx2+--anxn) — E( e (talxl+ta2x2+--tan xn))
= E( e(taxD)) E(e®@2%2)) . E( e@n*n) Y= My, (a;t) My, (3st) ... Myn(ant)

= EXP {,n alt+  a1o1%t } EXP {uz a2t + - 022a2%t } .EXP {un ant +
E ananztz}

2

That is a moment generating function of Y~ N[YL aipui , YL, a?o? |

For a special case thatisif X, Y ~N (u,0?)? thenX-Y~N(u— u,o?+ o2)

.eX-Y ~N(0,20?)

Example:

LetY1l,Y2...... Yn be independent and identically distributed random variables such that
forO<P <1.P(Yi=1)=pandp(Yi=0) =g =1—psuchrandom variables are
called random variables. W=Y1+Y2 ..... +Yn. What is the distribution of W?

Solution :

My (t) = (pe’ + )

Mw ( t) =E ( etW) =E ( et(y1+y2+ ...... +yn)) =E ( e(ty1+ty2+ ...... +tyn))

=E(ePH)E (e??) ....E(e"™) =Myl (t) My2 (t) .... Myn ()

=(pe’ + q).(pe’ + q).....(pe" + q) = (pe’ + Q)"

That is a moment generating of b(n.p) .Thus W ~ b(n .p).

Example:
If X ~N(0,1)thenY=X2~y2?

x2

ion - = Y2 -1 -7 .
Solution : LetY =X ,f(x)—me 2 ,-0 <x<o00

2
—_ _ 2\ _ (% 2 1 1 X x2
My(t)—E(ety)—E(etx)—f_ooetx Nl de)— S me 7 dx
0 1 _% 1 w (1205 *a-2
=l N - = (1-2t); e e € dx= (1_2t)2
3
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That is a moment generating of yZ. Thus Y~ y2.

#oe e

#0,

In general If x;, x5, ...., x,~N(0,1),then Y = x + x2 + ...+ x2~ x2.

S0 08 R0,

08

Example: If x~ N(u,02),then Y = % ~N(0,1)

sdesde

1 _te=p?
e 2 o

,— 00X <00

&

Solution: x~N(pu,0?) - f(x) =

e

2

~l

&

Y:%ﬁ oy=x— u - ody =dx

e

e

_ [ e 2=+ _ 1 00 tx—_u_i(x—_u)z
My(t)—ety—f_ooe( a)f(x)dx—maf_ooe( )3 dx

e

S Sk SEe

&

_(y*+2ty)

0 _y_z o0
f_ooety.e Z.Udyz\/%f_we 2 dy

&

1

2T O

&
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The Distribution of Xx: Let x; ,x,...and x,are independent and identically

o®,
SRS

distributed normal random variables with mean [ and variance o2 , then the way to
find the Distribution of X is
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n

That is a moment generating function of N (u, ) , Thus

X ~ N(,ua—z).

n
That is

n(x=m)?2

f()?): %ie 202 ;-oo<)_(<oo

To drive the mean and var . of X :
E(®)=E(> 2y 21 )= (E(y) + E(Xg) .. +EXy)

-1 _1 o
=t pe ) =—np = p

~E(X)=u

G(a,f), Find The Distribution of X ?

Solution:
my (t)=(1 — )™

mg (t)= E(ezf)= E (e%(x1+xz+.....+xn))= E(B%x1+%x2+"'+%xn)
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To drive the mean and var. of X :
(var(x,) + var(x,) + - + var(x,))

1
—na
n

1
nz

nx

le
%(E(xl) + E(x,) + -+ E(xn))
B =ap
1xi)

n
L=

(X)na'—
i=1 xi)=
Var(%Z-

1
n

na
T Bar(na)

HES)
(af +af + -+ aff)

E(X)=ap
var(X)

That is a moment generating function of ¢ (na, é) Thus
B :0<X<oo
1
n

X ~G (na, %)

That is
f(x)
E(X)=
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Theorem:- Let X;.X, .... X, be observations of a random sample of size n from the normal
distribution N(y, 2) Then the sample mean .
X=-yn i=1 X
and the sample varlance
$? = — YN, (X — X)?
are independent and
(n—1S? YL, Xi—X)?
02 B 0?
Proof :- we are not prepared to prove the independence of X and S? at this time, so we accept it
without proof here . To prove the second part . note that

w=yn (xl u) inzl[(xi—X):(X—m]z
=yn, (L)Z 4 nE-w?
- o

o2

because the cross-product term is equal to
- (X;—X)_2(X— G
2 yp ERED IR g X — %) = 0

9

ButY; = (XG“) =123..

are standardized normal variables that are independent. Hence w = Y% Y? is x%(n) by corollary 5.4-
3 Moreover

. 2
since X is N(, ) it follows that

72 (P_i—u)zzn()_(—u)2

o/vn o2
is x%(1) by Theorem 3.3-2 In this notation. Equation 5.5-1becomes
—1)s?
(0]

However from the face that X and S? are independent it follows thatZ? and S? are also
independent In the mgf of W this independence permits us to write

E[ tw E[ t((n 1)s2 +Zz)] E[ ((n 1)s2 ) tZZ] _E [et((n;lz)sz)] E[etzz] |

Since W and z?2 have chi-square distribution we can substitute their mgfs to obtain (1 — 2t)_n/2 =

E[ e ](1 —2t) /2

((n 1)s? —(n—1)/
Equivalently we have E[ ] =(1—-12¢t) 2 t<1/2



(n— 1)s

This of course is the mgf of ax?(n — 1) variable accordingly( has that distribution

Example:- If X~N ( )ShowthatZ-

]~N(0 1)

\/ﬁ
Solution:

Since X~N (p, %2)

—_1<(x u)2>
2 o2 _
f(X) = e m /) —<X< o

—21'[
n

—1<<x u)2>
2\ o _
vn — 00 < X<o00

P
0= e
z=X¢

L
M,(t) = E(e")

:E(et<)_%u>)
E(et<i )) =/, <Xfu> /n e_;<(x%02>dx

_ X-p| oy _
Iet[y— %]_)\/ﬁ_

% X=2
X—\/H+u —>dX—\/de

{z) )
() 9 2 o —
v [ e /e n/dX

oV2mY—

>
[
=

E(e%) =

-1
_vn ty o3 Y S
G\/_f— eres \/ﬁdy

Y 2ty

E(e%) =

)dy

_(y 2t+t2 2

E(e™) =

fov—f

E(e™) = ==/" e ) dy

1 . _<y2—2t+t2)_ﬁ
E(etZ) — \/T_“f_oo e 2 2 dy

E(e® ) =—[ e
Vaw -
2

t
2 00—
Ee™) ==/ e (

_y-p?
2 ezdy

- t)

)dy



Let h=y-t > dh = dy

tZ

tzy _ €2 [© ih?
E(e )—mf_ooez dh
% -1 -1
tzy — a7 [(© L o350 N L
E(e)—erOOZRez dh »—ez" =1~N(0,1)

t2

E(e')=ez~N(0,1)

vn

Z:FQ”] ~N(0,1)

Student t-distribution:-
Theorem :-Let T = z

IC

where Z is a random variable that is N(0,1), U is a random variable that is X2(r) and Z and U are
r(F+

independent . Then T has a t distribution with pdf f(t) = ( 2 2 ! —

v (3) (142) *

r

—o<t< o

proof :- The joint pdf of Zand U is
1 2 r_ _u
Z,U)= e 2 -u-ve 2
R T

the cdf F(t)=P(T< t) of Tis given by

F)=P[ = <t

ofz= )

=[ f F g(z u)dzdu. That is F(t)= —

t e 2
2(r+1)

dz uze 2du

the pdf of T is the derivative of the cdf, so, applymg the fundamental theorem of calculus to the
inner integral

, o o~ @) r
we find that f(t) = F(t) = — A \Euz le—u/2qy

FG) fo 2(r+1)/2

r+1
1 oo u 2

:ﬁr(g) fO 2(r+1)/2

1+t2

e

In the integral, make the change of variables y=(1+t%/r)u, so that j—; = 1+t12 T



co (r+1)/(2-1)
Thus, f(t) = JL&xDl/2 [ ! y

\/ﬁr(g) (1+t2/r)r+1)/2] Jo F[r:_l]z(r+1)/2
The integral in this last expression for f(t) is equal to 1 because the integrand is like the pdf of a chi-
square distribution with r+1 degrees of freedom . Hence , the pdf is
B l.,[(1‘+1)/2] 1
O="F0 | o%
) (1)

r

e V/2dy

—o<t< o

Example:if T ~t(10) then what is the probability that T is at least 2.228?
Solution:

P(T>2-228)=1-P(T<2-228)

=1—-0-975 (fromt-table)

=0-025

The F-distribution

Next Consider two independent chi- square random variables U and V having and in degrees of
freedoms respectively. The joint pd f h(u ,v)

of u and v is then

1

hu V)= o(Y)r(2/y) 2 " e

T T —(u+v
u1/2—1v2/2—1 e ( )/2

0 O0<u,v<om
we define the new random variable w—v; L and we propose finding the p d f g, (w)of w, z=v then
2
W_u/7‘1
U/TZ

define a one to one transformation that maps the set S={(u ,v):<u<oo, 0<z<co} onto the T= {(w, z):, 0
<W<oo,0<Zz<o0} since u=(:—1)zw, v=z the absolute value of the Jacobean of to the transformation
2

is|/| = <r1/r2> z the joint 2 p d f g(w ,z)of the random variables w and z=v is them

1 rizw 172 (2-2) W 2
G(w ,2)= — L 2z 2z ex =+ 12
W e ) Pl G+ D15

provided that (w, z) € T and zero elsewhere. The marginal p d fg, (w)) of w is then

gi(w) = f g(w,2)dz

101/2 T
0 (rl/r ) w /2_1
J : 2t exply (G + D]z
o (rl/ 2) r("2/ 2 e

If we change the variable of integration by writing Y== (— + 1) It can be seen that




T
®  n/n 2 /21 2y 2

w) = T1+ra/2-1 eV w—0 ]
9:(w) jo r(ry/2)r(ry/2)201712)/2 (rlw/rz + 1) 7”1W/ y
n+1
H(ry+ry/2)(r /1) 2 wr/2 0
= { r(r1/2)r(rz/2) C(14mw/ 1) (r+712) /2 SW<
0 0.w

Accordingly, if U and V are independent chi Square variable with r;and r, degrees of freedom,
respectively, then w= (U /ry)/(V /r,) has the p d f g, (w)the distribution of this nandam variable is

usually called an F-distribution and we often call ration which we have denoted by w ,f. That
is, F=2/"2
V/ry

Example

Let F have an F-distribution with r;and r, degrees of freedom, we can write F=(r; /1) (U /V) where
U and V are independent X2 random Variable with r;and r,degrees of freedom respectively

k .

— E(UEV~5). Provided of

1
course that both expectations on the night side exist K> (r; /2) is always true, the first expectation
always exists. The second expectation, however, exists if r,> 2k. i.e. the denominator degrees of
freedom must exceed twice k Assuming this is true , it follows that the mean of f-is given by

Hence for the kth moment of F, by independence we have E(FX) =

— T2
2 11"(?—1)_ 5

T
r(f) Ty—2

E(F)::—i o

Theorem 1:

Let I and V be two independent random variables having chi-squared distributions

with ©; and we degrees of freedom, respectively. Then the distribution of the

Eﬁ; is given by the density function

random variable F' =

T[[v1+u2)/2] (g fug )12 glv1/2)-1 f >0
hif) = [lo1/2)0(v2/2) 14wy f/ug)lvatez)i2) :

0, f<o

This is known as the F-distribution with »; and w; degrees of freedom {d.f.}.

the density function will not be used and is given only for completeness. The curve of
the F-distribution depends not only on the two parameters v, and v, but also on the order
in which we state them. Once these two values are given, we can identify the curve.
Typical F-distributions are shown in Figure 1.



Let f, be the f-value above which we find an area equal to «. This is illustrated by the
shaded region in Figure 2. Hence, the f-value with 6 and 10 degrees of freedom, leaving
an area of 0.05 to the right, is fy o5 = 3.22. By means of the following theorem.
Theorem2:

Writing f,(oy,92) for £, with vy and vy degrees of freedom, we obtain

fi—alr, ) = %

ﬂ(yzat}l)-

d.f. = (10, 30)

d.f. = (6, 10)

Figurel: Typical F-distributions.

f

O for

Figure2: Illustration of the fo for the F'-
distribution.



Thus, the f-value with 6 and 10 degrees of freedom, leaving an
area of 0.95 to the right, is

1 1
f0.095(6,10) = — (.246

fo.05(10,6)  4.06

The F-Distribution with Two Sample Variances

Suppose that random samples of size n, and n, are selected from

: : : 2 2 :
two normal populations with variances 71 and o3, respectively.
From Theorem 8.4, we know that

zi _ (4 _21)5? and X% _ (122 _21)53
o1 b
are random variables having chi-squared distributions with v, =
— 1 and v, = n,—1 degrees of freedom. Furthermore, since the
samples are selected at random, we are dealing with independent
random variables. Then, using Theorem 1 with xf = U and x5 =V

, We obtain the following result.

X

Theorem 3 :

IfS2 and 53 are the variances of independent random samples of size n; and n;
taken from normal populations with variances 01 Hand o] 7, respectively, then
Stloi _ o3t
S3jo}  oiS;
has an F-distribution with v, = n; -1 and v, = n, -1 degrees of freedom.

F=




ffl 43yl p glall Ay i) 408

Central limit theorem

Def. If X is the mean of random sample ; x;, x5, ..., x,, of size n from a distribution .

with finite mean and finite variance then the distribution of rv. w = f_” ~N(0,1)

Vn

in the limit as lim,,_, o [f;”] ~N(0,1)
I\

limy, e p{lyn —cl <€} =1or lim, o p{ly, —cl = €} =0

Chebyshev's inequality

: 1
Where lim,,_ o, p{ly, —c| <€} =1 — = lower

1

lirnn—>oo p{lyn - Cl = E} = k_z uper

Example: let X,, denoted the mean of a r.s. of size n from distribution having the
mean y and the variance a2 show that X,, 3 U.

Solution:
p[|X, — 1| <€l = 1—k—12
limn_mp“Yn — y| < e] =1 Ve >0

Since a distribution is X,

mean()_(n) =Uu ,var(Yn ) = %2 = S5.D.= fvar(Yn) = \%

_ 5,0 _en
Lete—kﬁ:k— -

lim,_,,p [|)_(n - ,u| < k\%] > lim,,_, [1 — (ﬁ)J =1

limn_)oopﬂfn - ,u| < E] =1

C.S

2X, S
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2 .
Example: Show that% 23 62
Solution:
1
pliyn —cl<elz1-5
lim, e plly, —cl<e€]l=1;Ve>0
2

Since a distribution is — ~X% (o)

~mean=m-—1) ,var =2(n—1)

p[:—i—02|<e]21—k—t 0
o[-0 mf <)

let LD~k 2(n—1)

A e(n-1) N 2 _ €(n-1)?%

02,/2(n-1) "~ o%2(n-1)

. s?
lim,, . p g

2
1i s
My, P [ 72

s i n_)oop[ ——0' |<E]=1

s2 c.s
> — 0
n-1

2

c.S c.S
Example: If x,, — ¢ show that ,/x, —+/c

Solution:

< k2 =D = limy e [1-
< k2 =D 2 limy, oo [1 -

A6yl sl oyl il

€2(n-1)2
o%2(n-1)

20* ]:1

€2(n-1)

lim,,[|x, —c| < €] = limn_,ooﬂ(\/x_n— \/E)(\/m + \/E)| < E]
— im (Ve -vellE Ve <d |+ Vel

n—->oo
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fm‘ 8 pual)  glall oy 1) At
pe Ll clpdaly ) acdd

n—-oo

- i [N 7 <

€ /

let m =€
= lim [|/% ~ve| < ¢’

limyseo [l — €| < €] = lim [|\/2, — Ve[ < €']

c.S
Since x,, — ¢ = lim,_,,[|x, —c| <e€] =1

e limy oo ||y — Ve| < €] = 1

Example: Let w,, denote a random variable with mean p and variance :—p , Where
p > 0, wand b are constants (not functions of n). Prove that w,, converges to u . or
(Wa = 1)

Solution:

pllwy —ul <e=kol 21~

. . b
sSince mean = U and variance = n_p

b
lete =k —
€
k_\/g/
VnP
_en?
k_x/E

: f b . 1
lim,, . p [|Wn —ul <k n—p] > lim,, L, [1— <€Jn_p>2
Vb
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: - | ..
lim, . p|lw, —ul < k\/; > lim,,, [1 —

: _ b |
lim,, . p |Wn—[l|<k\/; =1

limy, e pllw, —ul <€l =1

c.s
Wn — U

b

€2nP

|=1

18l plal g 0 i

Example: Let the random variable Y,, have a distribution that is b(n, p)

Prove that Y"/n = p.

Prove that 1 — Y"/n S1- p.

Solution:

Since Y,, have a distribution that is b(n, p) =

Mean (Y,,) = np and

Var (Y,) = npq
Y,
p [ " —p
1

pllY, —np | <ne] =1 -5

>1 _ 1 * N
= 2

<E€

Let ne = k. /npq

ne

k=75

lim,, Lo p[IYy —p | < ky/npq| = lim,_o

lim,, o p[IY, —np | < ky/npq| = lim,o

1_T

(

npq

1
n2e2
npq

)2

|
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fm‘ 8 pual)  glall oy 1) At
L Ciludaly ) acd
llmn_,oop[lY —np | < k/npq ] > lim,,_, [1 ——|=1

nez
limy, o p[lyn —np | < ky nPQ] =1

hmn_mplyn/n—p <e|l=1
Y c.S
n/n—>P
pl|1-"n—-p)|<e|z1-3
p 1—Yn/n—1+p‘<e >1—k—12
p —Y"/n+p <€ 21—12
p|I=11.[""n-p|<e|z1-%
p Y”/n—p <e€ _1—}%2 * N
1
[, np| <ne] =1 =
1
plIY, —np | <nel 21—
Let ne = k\/npq
_ ne
~ Vnpq

p[lY, —np | < kynpq ]>1——

: . 1
limy, p[IYn —np | < kw/npq] > lim,,_, [1 - (ZFT]
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lim, L p[IY —np | < ky/npq| = lim,,_, Il — %‘

npq

llmn_,oop[lY —np | < k/npq ] > lim,,_, [1 ——|=1

nez
limy, o p[lyn —np | < ky nPQ] =1

1=/ —1-

lim, ., p [

n/n 51—
Example: Let x;, x5, ..., X,5 be ar.v. of size 25 ~N(75,100) compute p(71 < X <
79)

Solution:

X~N (13 ) = X~N(75,22)

71— u X—u 79—u

Il

(71<X<79)=>p( )

=p(71 75 o 19= 75)=p(—2<z<2)

=F(2)-F(=2)=F(2)—-[1-F(2)]

=2F(2)—1=0.954 because F(2) = 0977
p(71 < X <79) = 0.954

Example: If X is the mean of random sample of size n from a normal distribution

with mean p and variance 100 find n sample size where p(u — 5 <X < u+5) =
0.954

Solution:
. ((ﬂ;5)—ﬂ) <G (ua+5)—u> _ 0.954
Iy Iy Iy

p(w<z<w) — 0.954
10 10
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-5vVn 5Vn
p (St <z<22) = 0954
p(t<z<¥)=0954

2p(z <) =1954  +2
p(z<2)=0977
F(2) = 0.977

ﬁzz:\/_=4

..2

>n=16

18l plal g 0 i

Example: Let x; x,, ..., X5 and y; ¥, _ y,5 be two random samples from two
independent normal distribution N(0,16) , N(1,9) respectively let X and y denote the

corresponding sample means compute p(x > y)

Solution:

2
since x;~N(0,16) = X~N (”' SI) - (O’E)

2
since y~N(1,9) = 7~N (b.2) = (1,2)
p(X>y) =p(x-7>0)

£-y~(0-1,25) = 2 - y~(-1,1)



i
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(x-y)—-(-1) _ 0—(-1)
[ECD 5, 2,

p(x—y>0)=p
=p(z>1)
=1-p(z<1)
p(z < 1) = 0.8438

=1-0.8438 = 0.1562

18l plal g 0 i

Example: Compute an approximate prove that :- the mean at r.s of size 15 from a

distribution having f(x) = 3x?;0<x < 1is betweeng and g?

Solution:

_(3x%2,0<x<1
f(x)_{o , 0w

E(x) = fole(x)dx = fol 3x3dx

1
3 3
_ [—x4] _3
4 0

E(x?) = fol x2f(x)dx = fol 3x*dx

- [%XS]O - %
var(x) = E(x*) — [E(x)]?

3 3 3 9 3
var() =5- ("= {~ 5 =5

_ 02 _ (3 3/g0) ,3 1
~ — ﬁ ~ — — ~ — —
x (,u, n) x (4 15 (4’400)

3 _ 1 = 1
=g and var(x) = 200 var(x) = 20
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=p(-3<z<1)

=p(z<1)—p(z>-3)

=p(z<1)—[1-p(z<3)]
=p(z<1)+p(z<3) -1

= F(1) + F(3) —1 = 0.8531 + 0.9989 — 1 = 0.852

e A5 25l Geaanll B 55l A A ) ALY (g lmal) (ornall )5 Ablas T sl

0.05 L& (s siva
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 | 05000 05040 05080 05120 05160 05199 05239 05279 05319 0.5359
0.1 | 05398 05438 05478 05517 05557 05596 05636 05675 05714 05753
02 | 05793 0582 05871 05910 05948 05987  0.6026 06064  0.6103 06141
03 | 06179 06217 06255 06203 06331 06368 06406 06443  0.6480 06517
0.4 | 06554 06591 06628 06664 06700 06736 06772 06808  0.6844 06879
05 | 06915 06950 06985 07019 07054 07088 07123 07157 07190 07224
06 | 07257 07291 07324 07357 0738 07422 07454 07486 07517 07549
07 | 07580 07611 07642 07673 07703 07734 07764 07794 07823  0.7852
0.8 | 07881 07910 07939 07967 07995 08023  0.8051 08078 08106 08133
0.9 | 08159 0818 08212 08238  0.8264 08289 08315 08340  0.8365 08389
10 | 08413 08438 08461  0.8485 08508 08531 08554 08577  0.8599  0.8621
11 | 08643 08665 08686 08708 08729 08749 08770 08790  0.8810  0.8830
12 | 08849 08869  0.8888  0.8907 08925  0.8944 08962  0.8980  0.8997  0.9015
13 | 09032 09049 09066 09082 09099 09115 09131 09147 09162 09177
14 | 09192 09207 09222 09236 09251 09265 09279 09292 09306 09319
15 | 09332 09345 09357 09370 09382 09394 09406 09418 09429  0.9441
16 | 00452 09463 09474 09484 09495 09505 09515 009525 09535  0.9545
17 | 09554 009564 009573 09582 09591 09599 09608 09616 09625  0.9633
18 | 09641 09649 09656 09664 09671 09678 09686 09693  0.9699  0.9706
19 | 09713 09719 09726 09732 09738 09744 09750 09756 09761  0.9767
20 | 09772 09778 09783 09788 09793 09798 009803 09808  0.9812 09817
21 | 09821 09826 09830 09834 09838 009842 09846 09850  0.9854 09857
22 | 0981 0984 009868 09871 09875 09878 09881 09884 09887  0.9890
23 | 009893 09896 009898 09901  0.9904 09906 09909 09911 09913 09916
24 | 009918 09920 09922 09925 09927 09929 09931 09932  0.9934 09936
25 | 009938 09940 09941 09943 09945 09946 09948 09949  0.9951  0.9952
26 | 009953 09955 09956 09957 09950 09960 09961 09962  0.9963  0.9964
27 | 009965 09966 09967 09968  0.9960 09970 09971 09972  0.9973 09974
28 | 009974 09975 09976 09977 09977 09978 09979 09979  0.9980  0.9981
29 | 009981 09982 09982 009983  0.9984 09984 09985 09985  0.9986  0.9986
30 | 009987 09987 09987 009988  0.9988 09989 09980 09989  0.9990  0.9990
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Limiting Moment-Generating Functions

To find the limiting distribution function of a random variable V by use of the
definition of limiting distribution function obviously requires that we know F,(y)
for each positive integer n. This is precisely the problem we should like to avoid.
If it exists, the moment-generating function that corresponds to the distribution
function F,(y) often provides a convenient method of determining the limiting
distribution function. To emphasize that the distribution of a random variable Y,
depends upon the positive integer n, in this lecture we shall write the moment-
generating function of Y, in the form M(t; n). The following theorem, which is
essentially Curtiss' modification of a theorem of Lévy and Cramér, explains how
the moment-generating function may be used in problems of limiting
distributions. A proof of the theorem requires a knowledge of that same facet of
analysis that permitted us to assert that a moment-generating function, when it
exists, uniquely determines a distribution. Accordingly, no proof of the theorem
will be given.

Theorem 1. Let the random variable Y., have the distribution function Fn(y)

and the moment-generating function M(t ; n) that exists for -h <t <h for all n. If
there exists a distribution function F(y), with corresponding moment-generating
function M(t), defined for |t| < h1 < h, such thatlim,_, M(t; n) = M(t), then
Yn, has a limiting distribution with distribution function F(y). Several illustrations

of the use of Theorem 1. In some of these examples it is convenient to use a
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certain limit that is established in some courses in advanced calculus. We refer

to a limit of the form

b cn
lim (1 + -+ (P(Il))
n n

n—»oo

where b and ¢ do not depend upon n  and

lim, . (@(n)) =0 . then

lim,_, (1 + % + (p(n))cn= lim,_, e (1 + E)cn= eb¢

n

Example:
_n/2 tz t3/\/ﬁ)_n/2

. t2 t3 1
lim,_, (1 - + n3/2) = lim,_, o (1 - + —7z

Here b=-t? , ¢c= _71 cand @(n) = t3/v/n
Accordingly for every fixed value of t, the limit is et*/2

Theorem 2. let Y,~b(n.p) show that the limit of Yoasn - o .

Proof:

Since Y,~b(n:p)

So My_ (t‘n) = (pet + )" g=1-p
m

p=np-p=_

My_ (t‘n) = (pet+ 1 —p)"

My (t‘n) = (p(et— 1)+ 1)"

My_ (t‘n) = (% (et —1) + 1)n
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et —1 1
MYn (t‘n) = (¥ + 1> — eu(et—l)

Y, = etE-D ~ poisson()
s limp e Y, ~ poisson(p)
Example: let Z,~Poisson(n) find the limiting distribution of v, = InTh o

Vvn
Solution :

My, (t‘n) =E(e"™) =E <et Z:/_Hn>

—n 7
t— t—
= e Vn E(e \/H)

Since Z,~Poisson(n) - My = en(e=1)
—n t
— o'Wn en(e'=1) — o—tVn gnevi-n
L
MYn (t) = e—Vn t-n+nevn
2

7 RS Y
evi = 4 — | —
Voo 2! \Vn

t 1/t)?
MY (t) _ e_\/H t—n+n<1+ﬁ+ﬂ (-) +)

t2
My ) = e—\/ﬁ t-n+n+vn th+--
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t2

My,() =ez ~ N(0.1)

Example: Let Y,, denote the n® order statistic of r.s from a distribution
of the continuous type that has distribution function F(x) and p.d.f.
f(x) find the limiting distribution of Z, = n[1 — F(Y,)] ?

Solution : Note that (Y;order smaller < Y, < -+ < Y, order larger)

Since Y, - order largest
g(Yn) = n[F(Y,)]"™* f(Yy)
Since Z, = n[1 — F(Y,)]
Z, = n—nF(Y,)
Ly
nF(Y,) =n—-7Z, - F(Y,) =1 Y
duy joid| Aol 0d®
Zn J duuill duey il Al glainl sl adleixV1 dladl o ol oy

F(Yn)

dy, 1
=

dZ,
dy, -1 dy, —1 1

dZ.  nf(Yy)  ldz.| = [nfor)l ~ nfcyy)

n
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h(Z,) = g(YnI ]I

hz = [1-2]

h(Z,) = n [1 ——] f(Yn) f(Yn)

. Zn] . Zn]
lim ll - — - lim ll ——] lim ll —?]

n—->oo n—-»>oo n—->oo

_ Z n
(1-0)lim |1 - f] = e Zn ~ Gamma (1‘1) or Exp (1)

n—oo |
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ORDER STATISTICS

[n practice, the random variables of interest may depend on the relative magnitudes of the observed

variable. For example, we may be interested in the maximum mileage per gallon of a particular
class of cars. In this section, we study the behavior of ordering a random sample from a continuous
distribution.

Definition ~ Let Xy,..., X, be a random sample from a continuous distribution with pdf f(x). Let
N,..., Y, be a permutation of X,, ..., X, such that

heh<..2l

Then the ordered random variables Y1,...,Y, are called the order statistics of the random sample
Xi,...,X;. Here Yy is called the kth order statistic. Because of continuity, the equality sign could be



Remark. Although X;'s are iid random variables, the random variables ¥;s are neither independent
nor identically distributed.

Thus, the minimum of X; s is

'1=min(Xy,..., X,)
and the maximum is

Fy=max(Xy,..., X,).

The order statistics of the sample X}, X3, ..., X, can also be denoted by X(1), X3), ..., X(,) where
X“J < Xm oo X[HJ'

Here X} is the kth order statistic and is equal to ¥} in Definition . One of the most com-
monly used order statistics is the median, the value in the middle position in the sorted order of the
values.



Example

(i) Therange R =¥, — Y} isafunction of order statistics.

(ii) The sample median M equals Y,, 1 ifn =2m + 1.
Hence, the sample median M is an order statistic, when n is odd. If n is even then the sample median can
be obtained using the order statistic, M = (1/2) [YH 1+ Y IEHI]'

The following result is useful in determining the distribution of functions of more than one order
statistics.

Theorem Let X1,..., X, be arandom sample from a population with pdf f(x). Then the joint pdf of
order statistics Yy, ..., Y, is

nf(y1)f(a)... fOm), foryp <<y

0, otherwise.

The pdf of the kth order statistic is given by the following theorem.



Theorem The pdf of Y is

n!

e OFOTA-Fe

fe ) = fr () =

for —o00 < v < o0, where F(v) = P(X; <) is the cdf of X;.

In particular, the pdf of Y1 is fi(y) = nf (»[1=F(y]"" and the pdf of ¥, is fu(y) =
nf () [F (v)]"~". In the following example, we will derive pdf for ¥,.

Example
Let X, .... X, be arandom sample from U [0, 1]. Find the pdf of the kth order statistic V.

Solution
Since the pdfof X; is f(x) =1,0 =x <1, the cdfis F(x) = x,0 < x = 1. Using Theorem the pdf

of the kth order statistic Y} reduces to

1
n k—1 (1—

: n—k
.1 vk g<y<i
k=1 —k)" S

fi(y) =
which is a beta distribution withe =k and p=n —k + 1.

The next example gives the so-called extreme (i.e., largest) value distribution, which is the distribution

of the order statistic Y,,.



Example
Find the distribution of the nth order statistic ¥,; of the sample X, ..., , X,; from a population with pdf

f ().

Solution
Let the cdf of ¥y be denoted by Fy (y). Then

Fo(y) = P(Yy < y) = P ( max X: < 1')

1<i<n

= P(X1 = y.....Xn = y) =|F(»]" (by independence).

Hence, the pdf f, (v) of ¥, is

. d fl— li
fn(y) = d}[Fh] =n[F(y)] & F(y)

=n[FO)I"' £ ().
In particular, if X1, ..., Xy Is a random sample from U |0, 1], then the cumulative extreme value distribution

is given by

0, y =0
Fp(y)=4y", 0=y=1

1, y=1



Example
A string of 10 light bulbs is connected in series, which means that the entire string will not light up if any

one of the light bulbs fails. Assume that the lifetimes of the bulbs, 71, ..., 110, are independent random
variables that are exponentially distributed with mean 2. Find the distribution of the life length of this string
of light bulbs.

Solution
Note that the pdf of t; is f(t) = 2¢=%,0 < t < oc, and the cumulative distribution of t; is Fy, (t) = 1—e

Let T represent the lifetime of this string of light bulbs. Then,

—2:‘_

T = min(ty, ..., 10).
Thus,
Fr(t)=1—[1- F,(n]".
Hence, the density of T is obtained by differentiating Fr (t) with respect to t, that is,
fr) =10f5(O[1 — Fy ()]

20(10)e Z (e 2)? =207, 0 <t <=
0. otherwise.



The joint pdf of the order statistics is given by the following result.

Theorem Let X1,..., X, be a random sample with continuous probability density function f(x)
and a distribution function F(x). Let Y1, ..., Y, be the order statistics. Then forany 1 < i < k < n and
—00 < X <y < o, the joint pdf of Y; and Y is given by

n!
(i—Dlk=1i=D!n-=k)

x[F ()= F@I 1= FOI™ £ f3)

f]",'.,ﬂ; (x,y) = [F '[-T]]r-_l

Example
Let X1, .... X, be arandom sample from U/ [0, 1]. Find the joint pdf of ¥ and ¥5.

Solution
Taking i = 2 and k =5 in Theorem . we get the joint pdf of Yo and Y5 as

n!

2—1
2—1)5-—2—1)(n—5) [F ()]

f}"L]'% (x, y) =

[F3) = F@P 2 < [1=FOI" f ) f ()

E(fﬂS}!I{}’_-ﬂz (1—y" > O0<x=y=<l

0, otherwise.
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Definition: For a given positive integer n, Y=(X,X,,..., X,) will be called a best
statistic for the parameter 6 if Y is unbiased, E(Y)= 6, and if the variance of Y is

less than or equal to the variance of every other unbiased statistic for 6.

Definition: There are many ways of defining a “best” statistic for a parameter . our
Definition adopts the principles of biasedness and minimum variance as being
reasonable. One of our purposes in adopting these principles is to motivate. In a
somewhat natural way the study of an important class of statistics called
"sufficient statistics estimator" stands for the value of that function; for example,
Xn =YXi/ nis an estimator of a mean p function, and the word" estimate" stands
for n and Xn is an estimate of u. Here T is Xn, and T(1, ..., n) is the function
defined by summing the arguments and then dividing by n. One of the basic
problems is how to find an estimator of population parameter 8. There are several

methods for finding an estimator of 8. Some of these methods are:

(1) Maximum Likelihood Method.
(2) Moment Method.

(3) Bayes Method.

(4) Least squares method.

(5) Minimum Chi — Squares Method.
(6) Minimum Distance Method.

Some properties of the estimator
To estimate a parameter of the population under study, we need to choose the
appropriate statistic in the sample to estimate this parameter. Often the

corresponding parameter in the sample is a better estimate, for example estimating



the population mean p through the sample mean m. The statistic used in the
estimation is called the estimate.

Definition : The estimator is unbiased: We say of a statistic that it is an unbiased
estimator of the population parameter if its mean or mathematical expectation is
equal to the population parameter.

Example: We say about the sample mean, m, that it is an unbiased estimate of the
population mean p because E (m) = . In contrast, we call the statistic S? in a
return-sampling that it is a biased estimator of 62 because E(S?) = 6% (n-1)/n # o2
while statistic S*?= S2n / (n-1) is an unbiased estimator in a return preview
Definition : The estimator is efficiency: The efficiency of an estimator relates to
the amount of variance of the sampling distribution of the statistic. If two
(statistical) estimators have the same mean, we say that the estimator with the least
disparate sampling distribution is the most efficient.

Example: For both the sampling distributions of the mean and the mean, the same
mean is the population mean, but the mean m is considered a more efficient
estimator of the population mean than the median because the variance of the
sampling distribution of the averages V (m) = o¢?n is less than the variance of the

sampling distribution for the median:
V(med) = o?n/2n = (6%*/n) (3.14159/2) > 6%/n

Obviously, using effective and unbiased capabilities is best, but other capabilities
may be used to obtain them.
Definition : The estimator is convergence : We say an estimator is convergence if

it refers to the estimated parameter value when the sample size tends to infinity.



Example: The sample mean is considered an convergence estimate of the

population mean because:

2

Unbiased ness il axe =i
Consistency  Blui¥l —
Mean Square Error (MSE)  Uaall <ilay jo Jaws 5ia =
Efficiency 3o La<l —
Sufficiency Al —o
Completeness Js =
1- Moment Method:

Let X; X5, ..., X;, be a random sample from a population X with probability density
function f(x; 64, 0,, ..., 8,,) , where 64, 0,, ..., 8,, are m unknown parameters. Let

0o

E(Xk) = J xk f(x, 61, 92, ,Qm)dx

— 00

Be the k" population moment about 0.

Further, let

Be the k" sample moment about 0.

In moment method, we find the estimator for the parameters

6,,0,, ..., 8,, by equating the first m population moments (if they exist) to the first
m sample moments, that is



E(X) = M,

E(X?) =M,
E(X3) =M,
E(X™) =M,

The moment method is one of the classical methods for estimating parameters and
motivation comes from the fact that the sample moments are in some sense
estimates for the population moments. The moment method was first discovered by
British statistician Karl Pearson in 1902. Now we provide some examples to
illustrate this method.

Example. Let X~N(u, 02) and X;, X5, ..., X,, be a random sample of size n from
the population X. What are the estimators of the population parameters u and o2 if
we use the moment method?

Solution: Since the population is normal, that is

X~N(u,0?)
We know that
EX)=u
E(X?) = 0%+ p?
Hence
u=EX)
= M1

Therefore, the estimator of the parameter p is X, that is

q=x



Next, we find the estimator of o2 equating E (X?) to M,. Note that
o2 =0%+u*—p

The last line follows from the fact that

1% 1%
EZ(XL- —-X)? = EZ(XE —2X; X + X?)
=1 =1
n n n
1 , 1 I o,
SRR
n. n. n.
i=1 i=1 =1

n n
IO, .ol _
Ity x e x
n 4 n 4
=1 =1
n

ZXE—XZ

i=1

S|

Thus, the estimator of 62 is %Z?ﬂ(xi — X)? ,that is

AN 12
o =EZ(XL-—X).
i=1



Example. Let X;, X, ..., X;, be a random sample of size n from a population X
whit probability density function

9x9—1 lfO <x<l1
;0) =
f(x:6) { 0 otherwise,

Where 0 < 6 < oo is an unknown parameter. Using the method of moment find an
estimator of 6 ? If x; = 0.2,x, = 0.6, x3 = 0.5, x, = 0.3 is a random sample of
size 4, then what is the estimate of 6 ?

Solution To find an estimator, we shall equate the population moment to the
sample moment. The population moment E(X) is given by

1

E(X) =j xf(x;0)dx

0

1
= j x0x91dx
0

1
= fxedx
0

0 1
0 [JA06+1
_9+1h ]0

0

To+1
We know that M; = X. now setting M, equal to E(X) and solving for 0, we get

7 0
T e+1
That is
X
0 =——
1-X

Where X is the sample mean. Thus, the statistic % Is an estimator of the
parameter 6 . Hence



Sincex; = 0.2,x, = 0.6,x3 = 0.5,x, = 0.3, we have X = 0.4 and

5 04 2
T 1-04 3

Is an estimate of the O .

Example. Let X~poisson(A) find Moment Estimate of A ?

Solution: Since X~poisson(A)

Ae™” forx=0,1,..

X) =
f(X) )(()! otherwise
B o XX
E(x)=A,Var(x) =1,X = -
EX)=X
A=ZM
n
A=X

Example: Let X~Binomaill(20, p) find Moment Estimate of p?
Solution: Since X~Binomaill(20, p)

(LpXqn= forx=01,..,n

HORS 0 0<p<1

E(x) = np,Var(x) = npq




p=—X="2=21=0.02
20 20 50

Example: Let X;, X5, ..., X;, @a random variable sample from Uniform (0,0) find the
Moment Estimate of 6 ?

Solution: Since U(0,0)

) = 1 fora<x<bh
fx) = baa otherwise
a+b
0+0
B = ——
E(x)=X
O % 56=2%
—_= - =
2

0
E(X?) = j X2 f(x)dx - j Xz-%dx
0

E(X?) 1 X306 E(X?) 63
= |- - — - o —
6 310 36
92
E(X?) = —
(%) =
E(XZ)—M?Z
3
02 X? 3y X2
—=Z : —>n92=32Xi2 - 0% = L X
3 n n
5_ 322




Example: Let X;, X5, ..., X;, be a random variable sample of size n from
distribution, with p.d.f

xa-1 for0<x<@6
0 otherwise

fesr =
Wherea > 0,6 >0

Suppose o is known find the moment estimator of 0 ,  and unbiased estimator of
07

Solution:
% a
B0 = [ x - fG)dx - B0 = f ey
E(X)—j—xx1 “der(X)—j—x“dx
ECX) a x%*1]eo ECX) a(6)*+! a0%0 af
= |—-" - = = =
0¢ a+ 1|0 ¢ - (a+1) 6% a+1) a+1
EX)=X
af _ [a8 = (a + 1)X]
:X -
a+1 a
. (a+ DX _  ab
f=—="2" X =
a a+1
+1
F(8) = F|—%|
a+1 _
- — E(X)
a+1[ ab ]
a la+1
E(6)=06

9 is unbiased estimator of 0 .



2- Maximum Likelihood Estimator:

Let L(0) = L(0; x1,...,Xn) be the likelihood function for the random variables Xj,
Xo, ...y Xpo i 0 (where 6 = 9 (Xq, Xo, ...,Xp) IS @ function of the observations
X1,...,Xn) IS the Value of 6 in © which maximum L(0). Then © = 3(X,X,,...,X,) IS
the Maximum likelihood estimator of 6 = 9 (Xy,...,X,) IS the maximum likelihood
estimate of 0 for the example xj,...,X,. The most likelihood important cases which
we shall consider are those in which Xy,X,,...,X, is a random sample from some
density f(x;0), so that the likelihood function is

L(0) = f(x1:0) f(X2:0) ... f(xn:).

Many likelihood functions satisfy regularity conditions; so the maximum-
likelihood estimator in the solution of the equation.

dL(6)

do

Also, L(0) and log L(0) have their maxima at the same value of 0, and it is some-

times easier to find the maximum of the logarithm of the likelihood, if the
likelihood function contains (k) parameters, that is

If L(Ol,Oz,....,Gk) = Hj‘l:l f(xi; 61, 92, ey Hk)

Then the maximum-likelihood estimators of the parameters 6,,0,,..., 6 are the
random variables ©; = 31(Xy,...,Xp), ..., ©2 = $(X1,...,.Xp), ... Ok = 9 (Xy,...,Xp),
where 01 0,,....,0¢are the values in © which maximize L(040,,...,0).

If certain regularity conditions are satisfied, the point where the likelihood is a
maximum is a solution of the (k) equation

dL(0,, ..., 0;)

a0,
dL(O, -, 00) _
de,
dL(®,,..,00) _
8,

In this case it may also be easier to work with the logarithm of the likelihood,

We shall illustrate these definitions with some examples.



Example 1. Letx,, x5,..., x,, a random variable sample ~ Geometric (p) find
Maximum likelihood estimator of (p)

Solution:

Since x4,..., x, ~ G(p)

) For x=1,2,...

P(1—-P)*™

feo={Pa= P 0<pe
Otherwise

f(xq, e, %0, P) = f(x1,P) . f(x3, P) euv e . f (X, P)

F((xy, o, 2%, P) = P(1— P)¥171 (1= P)*~1  P(1—P)*n1
f(xq, ., %, P) = P™ (1 — P)Exi—m

In f(xy, ..., Xy, P) = In[P"] + In(1 — P)E*i—"

Inf(xq, ..., %, P) =nln(P) + (Xx; —n) In (1 - P)

dln f(xq,.Xn,P) _
dp o

1 -1 _
n.; + (le - n).;—O

n 1 1-P
F- Gl -m =0« 5F
1-P Yx;—n
P  n
1_5_2?=1xl_22=> l—1=z:xl—1
P P n n P n
1 3 -
X
— = l==>Pin=n
n .



Rl =

i=1Xi

o)
Il
Xl =

Example Let xy, ..., x, ~ Poisson (1) find Maximum-likelihood estimator of A?

Solution: Since x4, ..., x, ~ Poisson ()

For x=0,1,...
g4
0 Otherwise

[y, o2, A) = flx, ) f((x,4) .. f((xn, A)

Mgt pXz2e=2 Nne=4
Xq) e, Xy, A) = )
[l wA) x;! X! X!
e_nllzgl:lxi
1=1""

e—nAAin
Ing(x,,A) =1n [WI
n
Ing (x,,A) = Ine~ + In AZ¥ — lnz %!
i=1

n
Ing (x,,A) = —ni+ inlnA—O

=1

Ing(x,, A1) = —nl+

l

x;InA

n
=1



Example: Let X ~ Bernoulli Parameters (P) find Maximum likelihood estimator
of P?

Solution: Since X ~ Ber (P)
For x=0,1

fo = {Pr AP

0 Otherwise

F Oty e X, P) = (1, P). f (%3 P) oo oo f (X, P)
FGty et P) = PAACL— PYI51 P (L = Y Pn(1 = Y
gy, P) = PEi=Xi(1 — P)n-Lima X

Ln g(x,, P) = ln[PZx"] + ln[(l — P)"—in]

n n

Ing(x,, P) = z x;In(P) + (n — Z x;)In(1 — P)

i=1 i=1



n n

n n
dlng(x,,P) 1 -1 1 1
P _inﬁ+("_zxi)1—13_inﬁ_(n_zx")1—13

i=1 i=1 i=1 i=1

n

ding(x,P) ~o 1 1
P . xiﬁ_("_zml—lﬂ dln g(xn,P) _
=1 =1 _O
dp
n n
1 1
. xiﬁ—(n—le-)l_on
i=1 i=1
n
Z 1 ( Z ) 1 1-P
xi—=Mm-— ) x
‘p LU1-P| ZEx
1-P n—Xx .
P 2 Xi
1-P P n X 1 n
— === En__ 1 . - 1
P P Yrixi Xx P X
n
1 n . P_z .
PY x n =, xi|+n
=1
n
P="""==>p=y
n X

Example: Let x;...x, ~ N(i, %) find Maximum-likelihood estimator of p & 2?



Solution:

—(x-w?

1
Since xy, ..., %, ~ N(it, 02) then f(x) = {75z € 2 for —w<x<oo
0 otherwise
f( 2) 1 —1(x1;ll)2 1 —1(x2;l1)2 1 _1(xn;l1)2
X1y ooy Xy W, 0%) = e 202 e 202 ., e 20
! " V2mo? V2mo? V2mo?
( 2 1 “1(Ex—w)*
glxy, . x,,0°) =————e 20
! " o™/ (2m)"
-n —Cxi-w’
g(p,1,0%) = 2mo?) 2 e 2
-n -n ~Cxi—w?
Ing(x,,w,0%) = (2n)2 +1In(c?)2 +1lne” 20
2
2y = " N O e Dl
lng(xn; H;O' ) - 2 ln(ZT[) Zln(o- ) 20_2
dln g(x,,u 02) 1
—0—0—— (=2 -
T 0-0-25(-2)) %~ W
dIngCenp) _ +2Quxi — 1)
du 20°
XExi—w
s 0==> () x-w) =0
XX _ a
VX =n.u==> p_:n U=X > l=2X
_\2
_ o, _Tn no o x5 —X%)
Ing(x,,x,0°) = 2 In(2m) 2ln(a ) 52
dlng(x,,%,0%) n 1l 0-2Qx —x)>

do? B 2 g2 4g*

do? 202 204

n, Ex-oh

202 204

dlng(x,, % 0%2) —n N X x; — %)°

0
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The Unbiased Estimator

Let X;, X5, ...... , X,, be a random sample of size n from apopulation with
probability density function f(x: 8). An estimator 8 of 6 is a function of
the random variables X;, X5, ....., X,, which is free of the parameter 0 .

An estimate is a realized value of an estimator that is obtained when a
sample is actually taken .

Definition: An estimator 8 of 0 is said to be an unbiased estimator of
6 if and only if

E(d) =6
If § is not unbiased , then it is called a biased estimator of @ .

An estimator of a parameter may not equal to the actual value of the
parameter for every realization of the sample X, X, ..., X,, , but if it is
unbiased then on an average it will equal to the parameter .

Example: Let X;,X,,...., X, be a random sample from a normal
population with mean u and variance a2 > 0 . Is the sample mean X an
unbiased estimator of the parameter p ?

_ 2
Solution: Since , each X;~N (u, 02), we have X~N (u ,%) .

2

That is , the sample mean is normal with mean p and variance % :

Thus E(X) = u . Therefore, the sample mean X is an unbiased estimator
of u

Example: Let X;,X5,....., X, be a random sample from a population
with mean u and variance a2 > 0,

Is the sample variance S? an unbiased estimator of the population
variance g2 ?

Solution: Note that the distribution of the population is not given .
However , we are given E(X) = pand E[(X — p)?] = o2.



In order to find E(5?), we need find E(X) and E(X?). Thus we proceed
to find these two expected values .

_ Xi+ X, + -+ X
E(X)=E(1 2 n)
n
n n
_n_ = u=u
=1 =1

Similarly:

Var(X) = Var (Xl tXt K ) Z Var(X;) = nizn:

i=1

2

Therefore

2
E(X?) = Var(X) + E(X)? = % + P

Consider

E(S?) =E

n
1 V2
TlZ(Xi —X)
i=1

n
E Z(Xi2 —2XX; + X?)
i=1

n

ZXiz — nX?

i=1

- {z E[X?] - E[n)?z]}

2 2 2 0-2
1[71(0 +u?) —n(u +7)]

Tn-—1

— 1 1 2
= —[(n-Do?

E(S?) = E(62%) = o?

-3-



Therefore , the sample variance S?2 is an unbiased estimator of the
population variance o2

Example: If X, X,,...,X,~N(u,0?) and let SZ,5% are estimators
of o2, Show that S? is unbiased estimators of 62 and S2 is biased
estimator of &2. Such that :

1 < _ 1% _
5P =— 1;(Xi _%)? and SZ = E;(Xi _ %)
Solation:

(n—1)S2

i a— ¢ ‘(n-1) 2E@)=mn-1

—1)S2

=" w1 s E@ =)
— 2 —
s =5(C20) - msh @

From (1) and (2)
(n—1)
0-2

E(S))=(m—-1) - E(SD) =o?

~ §Z is an unbiased estimator of o2

2, =" X 1) - B = (=1 __(3)

nSz n
E(Z)) =E <—2> = —ZE(SZZ) _ ®
o o
From (3) and (4) —E(S Y=n—1 - E(52) _("n_l)

SZ is a biased estimator of o2

Example: Let X;,X,,....,X,, be a random sample from a Bernoulli
population with parameter p , show that X,, is an unbiased estimator.

Solation:



E(R,) = (Z Xi> IS o) = %(Z p)

i=1 i=1 i=1
— 1 —
= nnp =P
Then E(p) = E(X,) = p is an unbiased estimator for p .

Example: Let X;,X,and X5 be a sample of size n =3 from a
distribution with unknown mean —oo < u < oo, and the variance o2 is
a known positive number. Show that both 6, = Xand9, =

%(2X1+X2+5X3) are unbiased estimator for u. Compare the
variance of 6; and 6, .

Solution :

~
1l w
=

. _ 1 1
E(0,)=EX)=E (5 X>=§3,u=,u

[2E(X1) + E(X2) + 5E(X3)]

oolr—\

. 1
E(6,) = gE(zx1 + X, +5X3) =

1 1
=g@utp+sp) =g =

~ 0, ,0, are unbiased estimators .

3

~ 1 1
Var(6,) =V (gz Xi) =9 [V(X1) +V(X3) + V(X5)]

i=1

1
[62 4+ 0%+ 0%] = 5302=—02

\OID—\

- 1
Var(0,) =V [g (2X, + X, + 5X3)

1
=2 — [V(2X; + X, + 5X3)]



::é%[4V(x3)+—V(Xz)+-25V(XsH

1 1
_ 2 4 <2 2y _ 2
—64(40 + 0 + 250“) 64(300)

15
327

Factorization ( jointly sufficient statistics )

Theorem : Let X, X5, ... .. ,X, bearandom sample of size n from

the density f(.;0), where the parameter 6 may be a vector . A set of
statistics

Sl = O-I(XIJXZJ ...... ,Xn ), ren wes nas "'ST' = JT(X1'X2' ...... ,Xn ).

Is jointly sufficient if and only if the joint density of
X1, X5, e e , X, canbe factored as fy x (X1,Xz, ... ... Xn 5 0)

.......

=g(0‘1(X1,X2, ...... ’XTL ), ...... ,O-r(Xl,Xz, ...... ,Xn ); 0)

= g(Sl’ e ""’ST' ; 9) h(XllXZJ ...... ,Xn ),

where the function h(X;,X,, ... ... ,X, ) is nonnegative and does not
involve the parameter 6 and the function g(Si,.......,S,; 8) is
nonnegative and depends on  (Xi, X5, ... ... ,X, )only through the
functions o;(., eceey.)y e, (o) ennny ).

Note that , according to Theorem . There are many possible sets of
sufficient statistics. The above two theorems give us a relatively easy
method for judging whether a certain statistic is sufficient or a set of
statistics is jointly sufficient .

However , the method is not the complete answer since a particular
statistic may be sufficient yet the user may not be clever enough to factor
the joint density .



The theorems may also be useful in discovering sufficient statistics .
Actually , the result of either of the above factorization theorems is
intuitively evident if one notes the following:

1- If the joint density factors as indicated , then the likelihood
function is proportional to g(S, ....., S,; €), which depends on the
observations  Xj,....,X, only through oy,....,0. [ the

likelihood function is viewed as a function of 6, so
h(X,X,, ... ... ,X,, ) isjust a proportionality constant ], which
means that the information about 6 that the likelihood function
contains is embodied in the statistics

01(, i)y, 00, en,)

Example: n.X; issufficlentto u , X;~(u,0%) by using
faclorization theorm .

Solation:
fIXy oo Xl = fX, - F(Xo 1) v f (X, 1)
Since X;~(u,0?)

—1(X u)}
o for —0o <X <o

1
oV21
fIXt, o Xl = fX ). f (X 1) s f (X, 1)

=500 =

1 -1X-1y? 1 —1/X—p\? 1 —1/X—p)?
Z eT(T) . eT(T) . eT(T)
oV2nm oV2n oV2n

1 \*" -1EXi-w?
= ( ) . 202
oV2T
1 \" [Ex)*-2uY Xi+u?]
= ( ) .e 202
oV 2T
1 \* -Cx)*> -—(=2uYXi+u)
= ( ) 202 e 202
oV 2T

-7-



0= (o) B
= . e 202 ,
ovV2Tm

—(=2u Yy Xi+u)
gt(X),0)=e 207

=~ ), X; is sufficient statisticto u .

Example: Y7X; is sufficient statistic to 1 X~(1,0%) by
using faclorization theorem

Solation:
X;~N(1,0?)

-1(X-1)?

e 202
oV2m

f&X) =
Since X; is i.id

FXy X, 1) = F(X, D). f (X, D o . f (X 1)

1 -1(X-1)? 1 ~1(X-1)2

Xy, o, X, 1) = e 202 . e 202
f' 1 n O'ré;f o 35;

1 1" -1Ex-1)°
X, e, X0, 1) = [ ] .e 2072
1 1" -UEX)*-2Y X+1]
FXp o X, 1) = [ ] e 707
oV2m

202 e 202

1 1" -1EX)* —(-2¥Xi+1)
f(Xl,....,Xn,l):[ ].e

o\2m
1 7" -1Ex»?
h(X)=[m/2_n] el
—(=2¥Xj+1)

g(t(x),0) =.e  20°
~ Y X; issufficient statisticto 1 .
Example:}.i*, X; is sufficient statistic to y,

X;~pio(y) by using faclorization .

-8-



Solation:
Since X;~pio(y)

y¥e™

f(X)={ X fOTX=O,1,,,,oo}

Since X; is i.i.d
flXe, oo Xy vl = fX0, V). f (X2, V). oo f (X ¥)

X1p-Y X20~Y
y“te Yy e
f[Xll ,Xn,]/] == T T e e e

X! X!
YZXi e_y
f[Xl, ,Xn,]/] = n—X
i=1 i
1 SR -
flX1, oo X v] = =5 .(y ie V)
i=1 Xi
h(X) = ,
iz1 Xi

g(t(x),6) = (y*Xi ™)

® . X; issufficient statisticto .
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Mean square error Uadl) cilay pa Jau glia
Definition:
The mean square error of the estimator 8, denoted by MSE (8) is defined as

MSE () = E(6 — 6)? = Var (9) + [E(0) — 0]?

MSE(d) = E(f—6)°
= E{[0—E@)] +[E@A) —0])
= E[f— E{ﬁ}]:’JrE[E[rﬁ ]
+2E[ _EB)|[E(@ 6']}

"i"

= E[f - E(0)]> + E[E(H) — 0]

= Var(f) + [E(8) — 6]
N—  —
Bias()”

Definition:

The unbiased estimator @ that minimizes the mean square error is called the
minimum variance unbiased estimator (MVVUE) of 6.

Example:

Let X;, X,, X5 be a sample of size n= 3 from a distribution with unknown mean
U, -0o< u <oo, where the variance o2 is a known positive number.Show that
both 8; = X and 8, = [( 2X, + X, + 5X5)/8] are unbiased estimators for p.
Compare the variances of 8;, and 9, .

Solution:
We have E(8;) =E (X) = % 3u=u And E@,) =E[(2X, + X, + 5X3)/8]
=5 [(2EQ0) + EX;) + SEQG)] = G [2u +p+5 ) =

Hence, both 8, , and 8,, are unbiased estimators. However«



Var (8,) = var (X) = 1; o2. Whereas Var (0,) = var [( 2X; + X, + 5X5)/8]
= 61—4 [4 var (X;) + var (X,) + 25 var (X3) = 61—4 30 2

Because var (8;) < var (8,) , we see that X is a better unbiased estimator in the
sense that the variance of X is smaller.
Uas
MSE(8) = Var(8) ¢ Jul
(Cnie e sl uaia) e IS4 Bias(8) = B(8) = E() — 0 o L=l
MSE(9) = Var(8) + B(9)" <+

. foel ant . . e MSE(0,
d)‘}“ ‘)JSAS‘ e Ly ‘é_ﬂ.ﬂ\ ‘)JSAS‘ U)S.ﬁ CORRta Gy c;\.ﬂﬁ\ 3(91’ 92) = MSEE;%
1

<1 %

Example:

If xq,..,x, ~N(M,c?) consider the two estimators of o2, 8, =s;%=
1 1

Y(x; — %)?,8, = 5,2 = ~Y(x; — ¥)2. Find the e(8y,6,).

(n-1) n

Solution :

E(s1?) = 0% = MSE(s;?) = var (s;%)

var <(n—a—i)512) =2n-1) = (71;—41)2 v(s;H) =2(n-1)

4

= v(s;%) = D MSE (s12)
2(n—1) n—1)
U(522)=TG4 , E(sp?) = " o’
n—1 1 1
B(s,?) = E(szz)—02=( )02—02=02——02—02=——02



2 (2n-2)o* 1 2n—-2+1)c*
MSE(SZZ) = 17(522) + (B(SZZ)) = T + EOA = 2
(2n—1)o*
N
_MSE(s;?) Tz 9 (2n—-D(n-1) -1
€= MSE(s;2) 2 o B 2n?
(n—1)
s,? is relatively more efficient than s, 2.
Definition:
débije.ahﬁﬂ\ﬁﬁﬂ\éwsa‘v(é)=Woﬁjeiﬁhxéﬁﬁéo\5\l\
nE|— 302
(Uniformly Minimum Variance Unbiased Estimator) 4 e s ahiidl opls
(UMVUE)
Example: let x4, ... ... ... ,x, ~ N(M,c?) show that x is an efficient estimator.
Solution :
1
5= (x—p)?
= e 202
foo = 2w o
In(f) = In (=) = 55 (x — )’
n(f) =1In — X —
V2r o/ 207 H
d In(f) 1 x—pw) x u
=0-5— 2(x—p) (-1) = ==-=
ou 202 x=m =D o? 0% o2
?In(f) 1
ou:2 o2
1 1 1 o2 -
= = =—=7(x
0% In(f) _1 1
nk [— i ] nE[ 02] n—

X is an efficient estimator of u

x isan UMVUE of u

6 . - . . .
8(91 ’ 02) = dei; OsSh ey cpoyadil) IS o



O a2 (e e sl uaie) ol g ale (S o a8l IS 13 o
MSE (65)

e(61,6,) = MSE (6,)

Example: let x4, ..., x,, ~ Poi(4) show that x is an consistent estimator of the

1) .

Solution :

D E®) = - (EQy) + -+ E@)) = - (A+ -+ )

1
n—times =-—(ni)=1A1
n
A
2) v(x) = -
lim v(x) = lim—=0
n—-oo n—-oon

X IS a consistent estimator of A.

Example: let x, ... ... ... , X, ~ N(u,0%)

a) show that the sample variance s? is a consistent estimator for ¢2.
b) Show that the maximum likelihood estimator (MLE) for u & o? are
consistent estimator for u & o2

Solution :
a)
1) E(s?) = ¢*
4
2) v(s?) ===
lim v(s?) = lim 20" =0
n-co nooon — 1

s? is consistent estimator of o2
b)

MLEA=X &  MLEo%=~ S(X; — X)?



1) E(X)=u
_ 0.2 _ 0.2
2) V(X)= — = limp,,v (X) = lim,,_, —=0

X is consistent estimator of u

~ 1 >
MLE 62 = - 3(X; — X)?

~ 1 = -1 Xi—X)? -1
E(6%) =E (G XX, - £)?) = T2 [pEID | - D) 2

(n-1) n

= a2 is biased

(n—1)
7= — S2~X*(n—-1)
E(Z)=(n-1)
V(Z)=2(n-1)

n—1 1
B(6?%) = E(6%) — 0% = az—azz(l—;)az—az
—g?2_152_452 =_1,2
n n

1
(n-1)

~ 1 > -1
62 ==3(x; - X)? = =2 [

n

S - K2 =2

nz (n-1)
_ 2(n-1)c*
==
. A2 . —0'2
lim,_,,, B(6°) = lim,_ — = 0
_ 4
lim,,_,o, Var (62) = lim,_,« % =0

- MSE = Var (8) + [B (8)]
«limy, e E (6% —0%)?% = lim,_,Var (6)%+lim,_,.[B (6%)]?
=0+0=0

62 is consistent estimator of o2.



Sufficiency Aty

In the statistical inference problems on a parameter, one of the major questions
Is: Can a specific statistic replace the entire data without losing pertinent
information?

0S50 ¢ dadxzo Je Slax¥l YUY JSLde 9
s LY Sca Jo g dwn Sy LY | A |

s

099 L@_uji_: < L Lo Joro Joo UT AN
]l ol Olgd el Gl ugs

Suppose X; ..., X, is random sample from a probability distribution with
unknown parameter 6. In general, statisticians look for ways of reducing a set of
data so that these data can be more easily understood without losing the
meaning associated with the entire collection of observations. Intuitively, a
statistic U is a sufficient statistic for a parameter 8 if U contains all the
information available in the data about the value of 6.

For example, the sample mean may contain all the relevant information about
the parameter p, and in that case U = X is called a sufficient statistic for . An
estimator that is a function of a sufficient statistic can be deemed to be a "good"
estimator, because it depends on fewer data values. When we have a sufficient
statistic U for , we need to concentrate only on U because it exhausts all the
information that the sample has about 6. That is, knowledge of the actual n
observations does not contribute anything more to the inference about 6.

Definition :

Let X;,...., X,, be a random sample from a probability distribution with
unknown parameter 8 .Then, the statistic U=g (X,....., X;,) is said sufficient for
6. if the conditional pdf or pf of X,...., X,, given U = u does not depend on 6
for any value of u. An estimator of U that is a function of a sufficient statistic
for 6 is said to be a sufficient estimator of ©.

Definition: Simple consistency



Let Ty, T,,..., T, be a sequence of estimators of (@), where T,, = t,, (X;,
.....Xy). The sequence {T,,} is defined to be a simple (or weakly) consistent
sequence of estimators of T (@) if for every € > 0 the following is satisfied:

rlli_r>r010Pg [7(0) —e< T, <1(0) + €]

Remark: If an estimator is a mean-squared-error consistent estimator, it is also
a simple consistent estimator, but not necessarily vice versa.

Proof :

Pg[1(0) — e <T, <t(0)+¢<]=P|[|T, —1(0)] < €]

=Py [[T,-t(0)]P<e?]=1- Seo [[Tn—z‘f(e)] ]

€

by the Chebyshev inequality. As n approaches infinity,Sy [[T,, — 7(8)]*]
approaches 0. Hence lim Py [t(0) —e < T,,<t(0) +€] =1

Example:

Let x;,...... , X, be iid Bernoulli random variables with parameter 6. show
that),™, x; is sufficient for 6.

Solution:

The joint probability mass function of xq, ... ... , Xp 1S

F Xy, o, X3 0) = OZi=1% (1 — ) Liza i

Because U = Y, x; we have f(xq, ... ... X 0) =01 -6)"Y 0<U<n.

Also, because U~b(n, 8) we have

_ (M qu (1 _ p\n-U
f(uﬁ)—(u)e (1-6) 0<U<n
Also,
. flxq,0xn) _yn .
v 0 0. W.

Therefore



n

o (1—-o)" 1
f( ) n; ) o , — l
F(xg, e, xp|U =) = X1fU(u); W _ (Z) 61— o) (Z) for u igl x

0 0.W.

Which is independent of . Therefore U is sufficient for 6 .

Example:

let xg, ... ... , X, be arandom sample from passion (1) show that the mean x is
consistent to A.

Solution:

~ piosson Distribution

v(x) = v[z%] = %v[le] = %v[x1 + x5 + -+ x,]

1 1
=F[A+}\+ ]==ﬁ7’l/1
A 4 evn 2 _€n
v(x)— where e = k —kf = k_\/i = k°= 7

i A 1 A
PL|lx—A|>k |-} < = 3
n €E“n E°n

}/1 A
lim P < |x — — < —— =
im |x — 1] > k (<=2 by chebysheos = 0

n—oo

211 _ _
lim,,_, [Z] = = 0 then x is consistent to 1

Example:
let x4, ... ... , x,, be a random sample from N(u, o) , show that S,,% is consistent to

o2 whereSZ—Z[ 1]2.

Solution:_Since ¢ 1)S 2 )((Zn_l) then v(§2) = 2r sincer =n—1

v(SnZ) =2(n—-1)



v [na_z 1Sn2] =2(n—1)

(n—1)? 5 ot
2\ _ 2(n-1)o* 2\ _ 20* .
v(§°) = D)? = v(§°%) = D where € = kog,
" 204 " evn—1 2 e2(n—1)
IR ICESY 207 20°
li |5 2 _ 2| > k 2;‘4 < ;
noe )1 79 m—D( " em-1
204
lim {[5,2— 02| > k |2t < 29" b chebysheos = 0
m J— —_
lim 2{S," — 0 CER A CE y chebysheos
204
I
(00]

S, is consistent to ¢2.
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Roa — Black well theorem

If 8 is unbiased estimator for 8 and t(x) is sufficient for 6, then the estimation 8
where

0=E 0
et
is also unbiased and its variance less than or equal to the variance of 8 i .e :
v(0) < v(H)

Example : Let x; , x5, ..., x,1S ar.s from Ber(60) if x,is unbiased est for 8, Find a
better estimator by using the Roa_Black well Theorem .

Solution :

o




f(x,0)=0*(1-06)1*

n

fCor g = | | F00)
i=1

= QXX (1 — Q)" 2% 1

h(x) does not depend upon 6. Then ) x; iss.s for 8. We have E(x;) = 6. By

using the Roa — Black well theorem, we get 6 = E (t(ix)) =E (Zx—;) is better

estimator than x;. Now what is 8

(5) = Flse=d

x; = x; isunbiased and ) x; = t is sufficient

R =r

x=0,1
—0P[x1=0]+1P[x1=1]
T B =t XX =t
=P[xlzl]:P[xl, rix; =t]
YXx =t P(Z?:l X = t)
x~Ber(6)

Y. x; ~Binomal (n, 8)

p (Z x; = t) = (?) ot(1 — g)n-t

Z x; ~Binomal(n — 1,0)

P Y=

Plx, = 1] * P[X, %, = t — 1]
~ PIXx; = t]

= ("2 )era—-eym




o ("~ et -yt

t—1
(Deca-or

— (n—1)!

1
_(?—1)_(t—l)!((n—l)—(t—1))!
O o

t ti(n—1t)!

(n—1)! t!(n—t)!
t-Din—0)!  nl

m—-D! -t Xx

(t—l)!*n(n—l)!_n n =X

~ X 1S a better estimator than x, for 6.

Example:

Let xq, x5, ..., x, ~P(0) - iid use the Roa— Black well theorem to find an
estimator for 6 better than x; iid= identically independent distribution

Solution:
0xe~?
f(xli 9) = X'
n@Lxi g—nd 1
f(xl,xz, ...,xn) == n—x' - n@zxie_ne * n—xl
1=1"" =17

~ Y x; is sufficient statistic (s.s.) for 8. Now , to Find 8

P[x1= X, ]=P[x1=X1, ix =t]
in:t P[ ?zlxl-=t]
_p[xl=X1,in=t—x1]:p[x1=X1,2xi=t]
p[Xx; = t] P[Xx; =t]
exle—Q
Plx; = X1 = X!




x~p(0)

Z x; ~P(nbh), z x; ~P((n—1)0)
DEIES .

(n—1)8 t—xq

P[zxi;t—DQ] = ( n(t—xl))!

exle—e (n _ 1)Qt—xle—(n—1)9

p[xl:Xl]z x;! (t —x)!
Yx;=t (nf)t e—m0
t!
%19 (n— 1)@t *1g~(M-1)0 t!
X, ! * (t —x)! ) (ng)t e—n
t!(n— 1)t

X, (t — xq)!Int

Now nt = n*t x nt=*1

X1 = Xl ti(n —_ 1)t—x1
P[ ] _
le =t Xl' (t —_ xl)' n*i x nt—x1
X1

- () (5
- (7))

()G (-3

t—xl

X IS a better estimator for 0

Completeness :- A statistic t(x) is said to be complete if for all 8 the function
h(t) statistic E(h(t)) = 0 which implies that A(T) =0

o




Example: Let x~Ber(6). Show that x is complete.
Solution :

f(x,0)=0*(1-06)1*
We have

E(h(x) = 0Owe prove h(x) =0

E(h(x)) = 2 h(x) * f(x,0) = 0

x=0,1
h(0) = £(0,6) + h(1) *x f(1,6) =0
h(0)*(1—6)+h(1)*0 =0
h(0) —h(0)*0 + h(1) *0 =0
h(0) + 8(h(1) —h(0)) =0
6 + 0 is perameter
h(1) — h(0) = 0 - h(1) = h(0)
+ h(0) =0
R(D)=0 x=01
« x is complete

Example:

Let x,, x5, ..., x,, is ar.s from a dist Ber(6) . Show that T = ) x,is complete
sufficient statistic for 8

Solution:

f(x,0) = 6%(1 - 0)1*

n
[ [reeor=6mna—oyzxs
i=1

in iss.s for@

-




Now , we went to prove T = ) x; is C.S.S

x~Ber(0)
z x; ~Binonal (n, 8)
E(h(®)) =0

EIA(T)] = ) h(T) « f(T,0) = 0

f(1,0)=f (T = Z x,0) = (1) * 671 — )"
E(h(T)) = h(0) () 6°(1 — )" + h(1) (]) 01 — )" + --
+hm) (7)) 6" (1 -6y " =0
h(0)(1 — )" = 0 %(1 — O)"
h(0) = 0
n (7)o -0t =0 %(7)e@—en
h(1) =0
h(0) = h(1) = = h(n) =0
RT)=0,T=12,..,n
in is C.S.S for 6

Exponential Family of distribution

Definition: A one Parameter exponential family of distribution is that if f(x, 8)

can be express in the from
f(x,0) = a(0) * b(x)ec®%
or f(x,0) =e‘@ L p(x)+a(@) a<x<pP

Where a , f does not depot upon 6.

O




Example: if x~Ber(8) , Show that f(x, 8). belongs to exponential family
f(x,0) =6*(1-6)'"
=0*(1-60)1-6)""*

=9x(1—9)*(1_—9)x

X

REEE
=(1- 9)eln(1g;9)x

- (1 - g)e™(9)

a(0) = (1—0),b(x) = 1,c(6) = ln( ),d(x) _x

1-6
f(x, 8) belongs to exponential family.

H.w : x~P(6) show that f(x, 8) belong to exponential family .
Theorem :

Let f(x,0) be a P.d.f which represent a regular case of the exponential class .
Than if x4, x5, ..., x,,. Where (n) is a fixed positive integer is a random sample
from a distribution , with P. d .f f(x, 0) the statistic t = )., di is sufficient
statistic for 8 and the family g(t,8) of probability density family of t is
complete that is tis C.S.S for 6.

Theorem : Any function of C.S.S is MVUE of it expectation

Example: if x~ exp(6) find MVUE

_x
e 6

f(x, 9) =

| =

a(6) =% ,b(x)=1,c(0) = —%,d(x) =X

f(x,0) = belong to exponential family t = i1, d(x;) = XL, x; is C.S.Sfor 6 .
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